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Abstract

There arise two problems when the expectation of some function with respect to a
nonuniform multivariate distribution has to be computed by (quasi-) Monte Carlo
integration: the integrand can have singularities when the domain of the distribution
is unbounded and it can be very expensive or even impossible to sample points from
a general multivariate distribution. We show that importance sampling is a simple
method to overcome both problems.
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1 Introduction

The computation of expectations Ef(q) of functions q(x) in R
d with respect

to a given distribution F with probability density function f(x) is one of the
most important applications of Monte Carlo methods (MC ):

Ef (q) =
∫

Rd

q(x) f(x) dx =
∫

Rd

q(x) dF (x) . (1)
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The naive (plain) Monte Carlo estimator is given by

Ef (q) ≈
1

N

N∑
i=1

q(Xi) , Xi ∼ F (2)

where the Xi are drawn from distribution F . This approach is simple and works
well in many situations, see, e.g., [1,2]. The convergence rate of this estimator is
O(N−1/2), provided that the variance of the integrand is bounded. The sample
of nonuniform random vectors is usually generated by transforming uniform
(pseudo-) random numbers into random variates and vectors that follow the
target distribution. For this task a lot of methods exist, see [3,4] for surveys.
However, it must be noted that generating points X ∼ F for (moderately) high
dimensions is difficult or even prohibitively slow if F is a general multivariate
distribution.

The convergence rate often can be increased when highly uniform point sets
(HUPS, also called low discrepancy sequences or quasi-random numbers) are
used instead of (pseudo-) random points. Such methods are called quasi-Monte
Carlo methods (QMC ). By the Koksma-Hlawka inequality the absolute inte-
gration error for computing

∫
(0,1)d q(x) dx is bounded by the product of the

total variation of q in the sense of Hardy and Krause and the star discrepancy
of the used point set, i.e., V (q)D∗

N(x1, . . . , xN), see [5]. There exist HUPS
where the star discrepancy (and thus the QMC estimator) converges with
O(N−1 logd(N)). When Ef (q) has to be evaluated with respect to some nonuni-
form distribution F with bounded domain, similar results exist [6].

The QMC approach requires point sets with low F -discrepancy, i.e., point sets
{Xi} where {F (Xi)} has low discrepancy [7]. Such point sets are also created by
applying appropriate transformation methods on low discrepancy sequences.
However, for general multivariate distributions such transformations are often
hard to find and/or numerically very expensive. Moreover, these may intro-
duce singularities into our integration problem and thus convergence is not
guaranteed by the Koksma-Hlawka inequality.

In this contribution we show that by means of importance sampling these two
difficulties can be avoided. Such importance densities can be very simple.

2 Quasi-Monte Carlo and Nonuniform Distributions

We have to transform low discrepancy point sets into sets of points with low
F -discrepancy when we want to compute the QMC estimator. However, the
transformation methods that have been developed for nonuniform random
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variate generation often cannot be applied for QMC, since these destroy the
structure of the underlying point set. Moreover, the theory of nonuniform ran-
dom numbers does not directly apply when quasi-random numbers are used.
(Halton [8] formulates a first theory of quasi-probability.) It is the authors’
opinion that the problem of generating nonuniform random points and that of
generating nonuniform quasi-random points should be seen as different prob-
lems. For the first one we have to transform uniform random numbers into
random points. The correctness of the transformation is verified using prob-
ability theory. The structure of the used uniform pseudo-random point set is
usually not taken into consideration. The latter problem of generating quasi-
random points should be interpreted as transforming the integration problem
with respect to F over R

d into an equivalent one over (0, 1)d with respect to
the Lebesgue measure, i.e.,

∫
Rd q(x) f(x) dx =

∫
(0,1)d q∗(u) du for some function

q∗. This is required as HUPS are constructed to work for the integral over the
unit cube. From this point of view it is somewhat surprising that most papers
dealing with QMC methods for evaluating expectations Ef(q) do not consider
the problem of appropriate transformations.

In dimension one (d = 1) the inversion method is usually the method of choice
as it preserves the structure of the underlying point set. Quasi-/pseudo- ran-
dom variates are then generated using X = F−1(U) where U is a U(0, 1)
quasi-/pseudo- random number. For our integration problem (1) this is equiv-
alent to integrate

∫

R

q(x) f(x) dx =
∫

(0,1)

q(F−1(u)) du ≈
1

N

N∑
i=1

q(F−1(Ui)) , Ui ∼ U(0, 1) .

There are some problems with this approach. First, the inverse CDF, F−1, is
often not given in closed form and thus numerical methods that only compute
F−1(u) approximately have to be used. There exist fast methods for this task,
see e.g. [9,10], but they either require the CDF or compute it by integrat-
ing the density function numerically. In the multivariate case the inversion
method can be applied to the marginal distributions, if the components of the
random vector X are stochastically independent. Otherwise, the conditional
distribution method must be used which can be seen as the multivariate gener-
alization of the inversion method. It requires the (inverse) CDF of conditional
distributions of marginal distributions [4] which is practically never available
in practice. Moreover, the F -discrepancy is increased when the components
are not independent [11].

A more serious problem in the framework of QMC is the fact that the inte-
grand q(F−1(u)) is often unbounded and thus has unbounded variation when
the support of the distribution is unbounded. This is for example the case
when the m-th moment of the i-th variable has to be computed in Bayesian
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inference where q(x) = xm
i , or in derivative pricing in financial engineering

when q(x) behaves like exp(
∑d

i=1 xi). In this case the Koksma-Hlawka inequal-
ity does not apply and convergence of the QMC estimator is not guaranteed.
Nevertheless, it is well known that QMC often works for functions with sin-
gularities and other functions where the integrand has unbounded variation.
Owen [12,13] has worked out theory to explain this observation for uniform
distribution F when the integrand satisfies some growth condition and the
low-discrepancy sequence avoids these singularities. He has shown that if an
integrand q satiesfies |∂uq(x)| ≤ C||x− z||−A−|u|

p for some C < ∞, 1 ≤ p < ∞
and some 0 < A < d near a singularity z, then the estimator converges with
O(N (−1+ε)((d−A)/d), (∂uf denotes the partial derivative with respect to all coor-
dinates in the index set u). Owen [12] gives examples where QMC integration
of unbounded functions works very well and examples where the convergence
is much worse. The results have been extended to the case where q is inte-
grated with respect to a nonununiform distribution F with compact support
[14,15].

An alternative method of transforming uniform point sets into those following
the target distribution is due to Hlawka and Mück [11,16]. It implicitly avoids
the points of singularities at the corners [14,15]. It can be seen as a rough
approximation of the inversion method where the resolution of the points is
1/N . It only works (well) for distributions with independent components and
compact support.

The acceptance/rejection method [4] is the most efficient generation method
for nonuniform random points in the framework of Monte Carlo integration.
This principle can also be used for QMC integration. However, we need an
additional dimension and the rejection step can be interpreted as integration
of the indicator function of the set of acceptance. Such a function has un-
bounded variation. Computational experiences show that convergence can be
as bad as for the naive Monte Carlo method. A possible solution is to replace
the indicator function by some continuous function with the same integral
(smoothed rejection, see [17,18]).

3 Importance Sampling

Both problems described above, namely difficulties of generating F - distributed
points and integrands with singulatities, can be avoided by means of impor-
tance sampling. It is not astonishing that IS and QMC can be combined and
this was also mentioned in some publications, see e.g. [19,20]. But it was not
yet presented as a simple and very useful tool to avoid all problems with the
generation of nonuniform quasi-/pseudo- random points. Otherwise, we think
that techniques like smoothed rejection would not have been developed.
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Importance sampling is based on the following identity. Let G and g be the
distribution function and the density function of some distribution, called
importance distribution in the sequel. Then

Ef (q) =
∫

Rd

q(x) f(x) dx =
∫

Rd

q(x)
f(x)

g(x)
g(x) dx =

∫

Rd

q(x)w(x) dG(x)

where w(x) = f(x)/g(x). The importance distribution can be chosen such that
it is easy to generate a sample of points that follow the importance density. In
the case of QMC this will be the inversion method. In dimension one (d = 1)
we then have the estimator

Ef (q) =
∫

R

q(x) f(x) dx =
∫

(0,1)

q(G−1(u)) w(G−1(u)) du

≈
1

N

N∑
i=1

q(G−1(Ui))w(G−1(Ui)) , Ui ∼ U(0, 1) .

By a proper choice of the importance density g the integrand has bounded
variation. It is enough that g has higher tails than the product of q(x)f(x) to
get rid of the singularity problem.

3.1 Distributions with Independent Components

For many important simulation applications (for example most discrete event
simulations and many problems in finance) the random vectors of the input
distribution F have independent components. Thus we can write our density
f(x) =

∏d
i=1 fi(xi) with marginal densities fi. In this case the generation of

nonuniform (quasi-) random points is simple as the inversion method is applied
to each component of the point from the underlying HUPS. But if the domain
of F is unbounded the integrand can have singularities on the boundary of
the unit cube, see Sect. 2.

As noted above we can eliminate these singularities by a proper choice of
the importance density g(x) =

∏d
i=1 gi(xi). We use the estimator Ef(q) ≈

1
N

∑N
i=1 q(G−1(Ui))w(G−1(Ui)) where Ui ∼ U(0, 1)d and G−1 is computed com-

ponentwise. However, often f is only known up to an (unknown) multiple, see
the Bayesian example below. Then we have to replace this estimate by the
ratio estimate [21]

Ef (q) ≈

∑N
i=1 q(G−1(Ui))w(G−1(Ui))∑N

i=1 w(G−1(Ui))
.
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It is possible that QMC is working very well in cases where the conditions
for the Koksma-Hlawka inequality fail and where Owen’s improved inequal-
ity predict a slower convergence. Moreover, these convergence results are of
asymptotic nature and do not guarantee smaller errors for importance sam-
pling when moderately large sample sizes are used. Thus we ran experiments
to look at the error for typical sample sizes used in practice with N a power of
two between 26 and 222. We experimented with f the normal distribution and
integrands q(x) =

∑
xr

i , q(x) = (
∑

xi)
r (r = 2 and 4) and q(x) = exp(σ

∑
xi)

(σ = 0.1 and 0.5). We used a base-2 Niederreiter sequence [22], and a Sobol
sequence [23] and repeated the experiments for fixed values of N with 1000 dif-
ferent randomly shifted point sets. We have compared our results with QMC
without importance sampling and with MC (with and without importance
sampling). The nonuniform random variates are generated by inversion. (We
also have included the Box-Muller method with behaves similar.)

In all experiments we found a clear superiority of importance sampling over
inversion, and clearly faster rates of convergence for dimensions one and two.
The choice of the importance sampling density is not critical as long as it
has tails that are heavier than those of f . In all cases importance sampling
with QMC was clearly superior to importance sampling with MC. We took
these results as a confirmation that our general considerations indicating that
importance sampling is better than inversion for the use with QMC are correct.
For larger dimensions the advantage is becoming smaller rapidly. Moreover,
the results depend on q and f . As one example Figure 1 shows the root mean
squared error (RMSE) for q(x) = exp(0.5

∑
xi) and dimensions 2 and 8. In

our experiments we encountered cases where inversion was a bit better than
importance sampling for dimensions above five for all sample sizes we tried.
We conjecture that this behavior changes for even larger sample sizes but we
cannot prove this and must also omit that this question is of little practical
importance as sample sizes larger than 106 are not common in practice.

We also ran experiments where f was the t-distribution with eight degrees of
freedom and q(x) =

∑
x4

i . Then the integrand has a very “high” singularity at
0 and thus importance sampling should be much better than QMC with inver-
sion. As expected the RMSE of QMC importance sampling is much (at least
ten times) smaller than that of inversion and the faster rate of convergence is
clearly visible for that example.

We also made two other observations in our experiments. First, the ratio
estimate was better than the classical importance sampling estimate in some
of the examples and never worse in the others. So we recommend to use the
ratio estimate for importance sampling with QMC. The second experience was
that finding a good importance sampling density for MC is a quite different
objective than finding a good importance density for QMC. In particular,
choosing g very close to f by some sophisticated method like the hat function of
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Fig. 1. Root mean squared error for f independent normal and q(x) = exp(0.5
∑

xi).
MC . . . MC with inversion, QINV . . . QMC with inversion, QIS . . . QMC with
importance sampling.

transformed density rejection (see [4, §4]) was inferior to “simple” methods like
using the double exponential distribution with a rough estimate for optimal
scale parameters in the QMC setting (whereas the sophisticated method was
superior for MC).

3.2 General Multivariate Distributions

If the multivariate distribution F is not the product of independent univariate
distributions the generation of random vectors from the distribution F is a
major problem. Here importance sampling allows to select a simple distribu-
tion G not too different from F . The selection of G for general multivariate
and multimodal distributions is by no means straight forward. For integrals
that occur for Bayesian parameter estimation problems f is often unimodal.
It is then general practice (see e.g. [24]) to search for the mode of f and use
the Hessian in the mode for a linear transformation that transforms F into
a multivariate distribution with approximately independent components. Us-
ing double-exponential importance sampling densities for these independent
components leads to an importance sampling algorithm that is well suited for
QMC methods as well. Of course this approach can again be interpreted as a
change of variable in the original integral (1).

We demonstrate the application of QMC for such problems by means of a
random effect Poisson model for pump-failure data (see [25]). It is possible to

7



101 102 103 104 105
10−5

10−4

10−3

10−2

10−1

N

error(rmse)

MC

QIS

Fig. 2. Root mean squared error for estimating the first parameter of the pump
model.

write down the posterior of the two hyper-parameters of that model in closed
form. To obtain the Bayesian parameter estimates we have to calculate the
expectations of the two marginal distributions of the posterior; this means that
we calculate our standard integral with f the posterior density and q(x) = xi.
Note that the integral of f is not known in this application and we can therefore
only use the ratio estimate.

Figure 2 shows the error of MC and QMC integration for different sample
sizes. The advantage of QMC is very obvious: For QMC with n = 1000 we can
expect the same error as for MC with n = 105. This is of considerable practical
importance as the evaluation of the density f (i.e., the posterior distribution
of the Bayesian model) for this example like for most others is very expensive.
Up to our knowledge the application of quasi importance sampling procedures
to Bayesian problems is not suggested in the literature. A possible reason is
that in recent years Markov Chain Monte Carlo (MCMC) methods are more
frequently used than importance sampling. There are some attempts to use
the QMC approach for MCMC (quasi-Markov chain Monte Carlo method).
However, the concept is certainly far from clear to interpret and theoretical
considerations assume strong conditions on the underlying point sets [26]. Up
to now there are no empirical results clearly indicating the practical value
of the combination of QMC with MCMC. We are therefore convinced that
our results of Figure 2 clearly suggest that importance sampling is the more
natural way to speed up Bayesian integration by applying QMC.

In [27] simple and easy to use importance densities for multivariate integration
are proposed.
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4 Conclusions

We have demonstrated that the combination of QMC and importance sam-
pling leads to a simple and very useful method for calculating expectations
with respect to multivariate distributions. This method can be used to cir-
cumvent the definition of nonuniform quasi-random variates. Interpreted as a
parameter transformation method it can be shown that it allows to get rid
of singularities of the integrand which increases the speed of convergence of
QMC. In the case of complicated multivariate distributions the application
of QMC techniques is much easier for importance sampling than for Markov
chain Monte Carlo methods.
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Akad. Wiss., Math.-Naturwiss. Kl. 206 (1997) 183–216.

[17] B. Moskowitz, R. E. Caflisch, Smoothness and dimension reduction in quasi-
Monte Carlo methods, Math. Comput. Modelling 23 (8–9) (1996) 37–54.
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[19] R. Schürer, Adapive quasi-Monte Carlo integration based on MISER and
VEGAS, in: H. Niederreiter (Ed.), Monte Carlo and Quasi-Monte Carlo
Methods 2002, Springer, Berlin, Heidelberg, 2004, pp. 393–406.
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