
RSTREAM: STREAMS OF RANDOM NUMBERS FOR STOCHASTIC SIMULATION

rstream: Streams of Random Numbers for
Stochastic Simulation
by Pierre L’Ecuyer & Josef Leydold

Requirements for random number
generators

Simulation modeling is a very important tool for
solving complex real world problems (Law and Kel-
ton, 2000). Crucial steps in a simulation study are
(Banks, 1998):

1. problem formulation and model conceptual-
ization;

2. input data analysis;

3. run simulation using streams of (pseudo)random
numbers;

4. output data analyis;

5. validation of the model.

R is an excellent tool for Steps 2 and 4 and it
would be quite nice if it would provide better sup-
port for Step 3 as well. This is of particular interest
for investigating complex models that go beyond the
standard ones that are implemented as templates in
simulation software. One requirement for this pur-
pose is to have good sources (pseudo)random num-
bers available in the form of multiple streams that
satisfy the following conditions:

• The underlying uniform random number gen-
erator must have excellent structural and sta-
tistical properties, see e.g. Knuth (1998) or
L’Ecuyer (2004) for details.

• The streams must be reproducible. This is re-
quired for variance reduction techniques like
common variables and antithetic variates, and
for testing software.

• The state of a stream should be storable at any
time.

• There should be the possibility to get differ-
ent streams for different runs of the simulation
(“seeding the random streams”).

• The streams must be “statistically indepen-
dent” to avoid unintended correlations be-
tween different parts of the model, or in par-
allel computing when each node runs its own
random number generator.

• There should be substreams to keep simula-
tions with common random numbers synchro-
nized.

• It should be possible to rerun the entire simu-
lation study with different sources of random
numbers. This is necessary to detect possi-
ble (although extremely rare) incorrect results
caused by interferences between the model and
the chosen (kind of) random number genera-
tor. These different random number genera-
tors should share a common programming in-
terface.

In R (like in most other simulation software or li-
braries for scientific computing) there is no concept
of independent random streams. Instead, one global
source of random numbers controlled by the global
variables .Random.seed , which can be changed via
set.seed and RNGkind, are available. The package
setRNG tries to simplifies the setting of this global
random number generator. The functionalities listed
above can only be mimicked by an appropriate se-
quence of set.seed calls together with proper man-
agement of state variables by the user. This is cum-
bersome.

Multiple streams can be created by jumping
ahead by large numbers of steps in the sequence of
a particular random number generator to start each
new stream. Advancing the state by a large number
of steps requires expertise (and even some investiga-
tion of the soure code) that a user of a simulation soft-
ware usually does not have. Just running the gen-
erator (without using the output) to jump ahead is
too time consuming. Choosing random seeds for the
different streams is too dangerous as there is some
(although sometimes small) probability of overlap or
strong correlation between the resulting streams.

A unified object-oriented interface
for random streams

It is appropriate to treat random number streams as
objects and to have methods to handle these streams
and draw random samples. An example of this ap-
proach is RngStreams by L’Ecuyer et al. (2002). This
library provides multiple independent streams and
substreams, as well as antithetic variates. It is based
on a combined multiple-recursive generator as the
underlying “backbone” generator, whose very long
period is split into many long independent streams
viewed as objects These streams have substreams
that can be accessed by a nextsubstream method.

We have designed a new interface to random
number generators in R by means of S4 classes

1

RSTREAM: STREAMS OF RANDOM NUMBERS FOR STOCHASTIC SIMULATION

that treats random streams as objects. The inter-
face is strongly influenced by RngStreams. It is im-
plemented in the package rstream, available from
CRAN. It consists of the following parts:

• Create an instance of an rstream object
(seed is optional):1

s <- new("rstream.mrg32k3a",
seed=rep(12345,6))

Consecutive calls of the constructor give “sta-
tistically independent” random streams. The
destructor is called implicitly by the garbage
collector.

• Draw a random sample (of size n):

x <- rstream.sample(s)
y <- rstream.sample(s,n=100)

• Reset the random stream;
skip to the next substream:

rstream.reset(s)
rstream.nextsubstream(s)
rstream.resetsubstream(s)

• Switch to antithetic numbers;
use increased precision2;
read status of flags:

rstream.antithetic(s) <- TRUE
rstream.antithetic(s)
rstream.incprecision(s) <- TRUE
rstream.incprecision(s)

Notice that there is no need for seeding a partic-
ular random stream. There is a package seed for all
streams that are instances of rstream.lecuyer objects.
There is method rstream.reset for reseting a ran-
dom stream. The state of the stream is stored in the
object and setting seeds to obtain different streams is
extremely difficult or dangerous (when the seeds are
chosen at random).

Rstream objects store pointers to the state of the
random stream. Thus by simply coping such an ob-
ject with the <- assignment creates two variables that
point to the same stream (like copying an environ-
ment results in two variables that point to the same
environment). Thus in parallel computing, stream
cannot be simply copied to a particular node of the
computer cluser. Furthermore, stream objects cannot

be saved between R sessions. Thus we need addi-
tional methods to make independent copies (clones)
of the same object and a methods to save (pack) and
restore (unpack) objects.

• Make an independent copy of the random
stream (clone):

sc <- rstream.clone(s)

• Save and restore stream object (the packed
rstream object can be stored and handled like
any other R object):

rstream.packed(s) <- TRUE
rstream.packed(s) <- FALSE

Package rstream is designed to handle random
number generators in a unified manner. Thus there
is a class that deals with the R built-in generators:

• Create rstream object for buit-in generator:

s <- new("rstream.runif")

Additionally, it is easy to integrate other sources
of random number generators (e.g. the genera-
tors from the GSL (http://www.gnu.org/software/
gsl/), SPRNG (see also package rsprng on CRAN),
or SSJ (http://www.iro.umontreal.ca/~simardr/
ssj/)) into this framework which then can be used
by the same methods. However, not all methods
work for all types of generators. A methods that fails
responds with an error message.

The rstream package also interacts with the R
random number generator, that is, the active global
generator can be transformed into and handled as an
rstream object and vice versa, every rstream object
can be set as the global generator in R.

• Use stream s as global R uniform RNG:

rstream.RNG(s)

• Store the status of the global R uniform RNG as
rstream object:

gs <- rstream.RNG()

Simple examples

We give elementary examples that illustrate how to
use package rstream. The model considered in this
section is quite simple and the estimated quantity
could be computed with other methods (more accu-
rately).

1‘rstream.mrg32k3a’ is the name of a particular class of random streams named after its underlying backbone generator. The library
RngStreams by L’Ecuyer et al. (2002) uses the MRG32k3a multiple recursive generator. For other classes see the manual page of the
package.

2By default the underlying random number generator used a resolution of 2−32 like the R built-in RNGs. This can be inscreased to
2−53 (the precision of the IEEE double format) by combining two consecutive random numbers. Notice that this is done implicitly in R
when normal random variates are created via inversion (RNGkind(normal.kind="Inversion")), but not for other generation methods.
However, it is more transparent when this behavior can be controlled by the user.

2

http://www.gnu.org/software/gsl/
http://www.gnu.org/software/gsl/
http://www.iro.umontreal.ca/~simardr/ssj/
http://www.iro.umontreal.ca/~simardr/ssj/

RSTREAM: STREAMS OF RANDOM NUMBERS FOR STOCHASTIC SIMULATION

A discrete-time inventory system

Consider a simple inventory system where the de-
mands for a given product on successive days are in-
dependent Poisson random variables with mean λ. If
X j is the stock level at the beginning of day j and D j
is the demand on that day, then there are min(D j, X j)
sales, max(0, D j − X j) lost sales, and the stock at the
end of the day is Yj = max(0, X j − D j). There is a
revenue c for each sale and a cost h for each unsold
item at the end of the day. The inventory is controlled
using a (s, S) policy: If Yj < s, order S − Yj items,
otherwise do not order. When an order is made in
the evening, with probability p it arrives during the
night and can be used for the next day, and with
probability 1 − p it never arrives (in which case a
new order will have to be made the next evening).
When the order arrives, there is a fixed cost K plus a
marginal cost of k per item. The stock at the begin-
ning of the first day is X0 = S.

We want to simulate this system for m days, for
a given set of parameters and a given control pol-
icy (s, S), and replicate this simulation n times in-
dependently to estimate the expected profit per day
over a time horizon of m days. Eventually, we might
want to optimize the values of the decision parame-
ters (s, S) via simulation, but we do not do that here.
(In practice, this is usually done for more compli-
cated models.)

We implement this model with the following R
code. (The implementation is kept as simple as pos-
sible. It is not optimized, uses global variable, and
we have neglected any error handling.)

load library

library(rstream)

parameter for inventory system

lambda <- 100 # mean demand size

c <- 2 # sales price

h <- 0.1 # inventory cost per item

K <- 10 # fixed ordering cost

k <- 1 # marginal ordering cost per item

p <- 0.95 # probability that order arives

m <- 200 # number of days

We use two independent sources for the simulation
of the daily demand and for the success of ordering
the product.

initialize streams of random numbers

gendemand <- new("rstream.mrg32k3a")

genorder <- new("rstream.mrg32k3a")

Notice that the following R need not be changed at all
if we replace rstream.mrg32k3a by a different source
of random numbers that provides the required func-
tionallity.

For the simulation of daily sales we need a gener-
ator for (truncated) Poisson distributions. Currently
a system for invoking generators for nonuniform dis-
tributions that use particular random number gener-
ators similar to the rstream package does not exist.

Developing such a package is the next step. Mean-
while we use the following simple (and slow!) gen-
erator which is based on the inversion method (De-
vroye, 1986, §X.3.3).

simple generator for Poisson distribution that

uses uniform random numbers from stream ’rs’

randpoisson <- function (lambda,rs) {

X <- 0

sum <- exp(-lambda)

prod <- exp(-lambda)

U <- rstream.sample(rs,1)

while (U > sum) {

X <- X + 1

prod <- prod * lambda / X

sum <- sum + prod

}

return (X)

}

The last brickstone is a routine that computes a real-
ization of the the average profit for a given control
policy (s, S).

simulateOneRun <- function (s,S) {

X <- S; profit <- 0

for (j in 1:m) {

sales <- randpoisson(lambda,gendemand)

Y <- max(0,X-sales)

profit <- 0

if (Y < s && rstream.sample(genorder,1)<p) {

profit <- profit - (K + k * (S-Y))

X <- S }

else {

X <- Y }

}

return (profit/m)

}

Now we can perform 100 independent simulation
runs for control policy (s, S) = (80, 200) and com-
pute the 95% confidence interval for the average
daily sales.

result <- replicate(100,simulateOneRun(80,200))

t.test(result,conf.level=0.95)$conf.int

confidence interval:

[1] 85.02457 85.43686

attr(,"conf.level")

[1] 0.95

Common random numbers

In the second example we want to compare the con-
trol policy (s0, S0) = (80, 200) with policy (s1, S1) =
(80, 198) in our simple inventory model.

resultdiff <- replicate(100,

simulateOneRun(80,200)-simulateOneRun(80,198))

t.test(resultdiff,conf.level=0.95)$conf.int

confidence interval:

[1] -0.3352277 0.2723377

attr(,"conf.level")

[1] 0.95

3

BIBLIOGRAPHY BIBLIOGRAPHY

The variance of this estimator can be reduced
by using the technique of common random num-
bers. We have to make sure that for both simula-
tions the same sequence of random numbers is used
in the same way. Thus we have to keep the random
streams used for demand and ordering synchronized
by means of reset calls.

reset streams

rstream.reset(gendemand)

rstream.reset(genorder)

resultdiffCRN <- replicate(100,

{

skip to beginning of next substream

rstream.nextsubstream(gendemand);

rstream.nextsubstream(genorder);

simulateOneRun(80,200)}

- {

reset to beginning of current substream

rstream.resetsubstream(gendemand);

rstream.resetsubstream(genorder);

simulateOneRun(80,198)})

t.test(resultdiffCRN,conf.level=0.95)$conf.int

confidence interval:

[1] 0.2354436 0.3717864

attr(,"conf.level")

[1] 0.95

The confidence interval is much narrower now
than with independent random numbers.

Parallel computing

When stochastic simulations are run in parallel, it is
crucial that the random numbers generated on each
of the nodes in the computing environment are in-
dependent. The class rstream.mrg32k3a is perfectly
suited for this task in a master/slave desgin.

Master node

create indenpent streams for each node

stream1 <- new("rstream.mrg32k3a")

rstream.packed(stream1) <- TRUE

stream2 <- new("rstream.mrg32k3a")

rstream.packed(stream2) <- TRUE

Slave node

rstream.packed(stream1) <- FALSE

X <- rstream.sample(stream1,1);

Remarks

In our opinion the proposed interface can serve as
a brickstone of simulation packages based on the
R environment. With this design, uniform random
number generators can be used as arguments to sub-
routines. Thus random number generators can be
easily exchanged or used in parallel. An extension
for nonuniform random numbers is the next step to-
wards a flexible and easy-to-use simulation environ-
ment in R.

There is one drawback in the implementation.
It makes use of RNGkind(kind="user-supplied")
which relies on a pointer to a function called
user_unif_rand. Thus if a user loads another pack-
age that uses this interface (e.g. rsprng or randeas)
or adds her own uniform random number generator,
the behavior of at least one of the packages is bro-
ken. This problem could be fixed by some changes
in the R core system (by adding a package variable
to RNGkind(kind="user-supplied") similar to the
.Call function.

Bibliography

J. Banks, editor. Handbook of Simulation. Wiley, New
York, 1998.

L. Devroye. Non-Uniform Random Variate Generation.
Springer-Verlag, New-York, 1986.

D. E. Knuth. The Art of Computer Programming. Vol.
2: Seminumerical Algorithms. Addison-Wesley, 3rd
edition, 1998.

A. M. Law and W. D. Kelton. Simulation Modeling and
Analysis. McGraw-Hill, 3rd edition, 2000.

P. L’Ecuyer. Random number generation. In J. E.
Gentle, W. Haerdle, and Y. Mori, editors, Handbook
of Computational Statistics, chapter II.2, pages 35–
70. Springer-Verlag, Berrlin, 2004.

P. L’Ecuyer, R. Simard, E. J. Chen, and W. D. Kelton.
An object-oriented random-number package with
many long streams and substreams. Operations Re-
search, 50(6):1073–1075, 2002.

4

	rstream: Streams of Random Numbers for Stochastic Simulation

