
UNU.RAN User Manual
Generating non-uniform random numbers

Version 0.5.0, 6 August 2004

Josef Leydold
Wolfgang Hörmann
Erich Janka
Roman Karawatzki
Günter Tirler

Copyright c© 2000–2003 Institut fuer Statistik, WU Wien.
Permission is granted to make and distribute verbatim copies of this manual provided the

copyright notice and this permission notice are preserved on all copies.

i

Table of Contents

UNURAN – Universal Non-Uniform RANdom number
generators . 1

1 Introduction . 3
1.1 Usage of this document . 3
1.2 Installation . 3
1.3 Using the library . 4
1.4 Concepts of UNURAN . 5
1.5 Contact the authors . 9

2 Examples . 11
2.1 As short as possible . 11
2.2 As short as possible (String API) . 12
2.3 Select a method . 13
2.4 Select a method (String API) . 14
2.5 Arbitrary distributions . 15
2.6 Arbitrary distributions (String API) . 17
2.7 Change parameters of the method . 18
2.8 Change parameters of the method (String API) . 19
2.9 Change uniform random generator . 21
2.10 Change uniform random generator (String API) . 23
2.11 Sample pairs of antithetic random variates . 24
2.12 Sample pairs of antithetic random variates (String API) . 27
2.13 More examples . 28

3 String Interface . 29
3.1 Syntax of String Interface . 29
3.2 Distribution String . 31

3.2.1 Keys for Distribution String . 31
3.3 Function String . 33
3.4 Method String . 35

3.4.1 Keys for Method String . 36
3.5 Uniform RNG String . 41

4 Handling distribution objects . 43
4.1 Functions for all kinds of distribution objects . 43
4.2 Continuous univariate distributions . 44
4.3 Continuous univariate order statistics . 49
4.4 Continuous empirical univariate distributions . 51
4.5 Continuous multivariate distributions . 51
4.6 Continuous empirical multivariate distributions . 56
4.7 MATRix distributions . 57
4.8 Discrete univariate distributions . 58

ii UNURAN User Manual

5 Methods for generating non-uniform random variates 63
5.1 Routines for all generator objects . 63
5.2 AUTO – Select method automatically . 63
5.3 Methods for continuous univariate distributions . 64

5.3.1 AROU – Automatic Ratio-Of-Uniforms method . 67
5.3.2 CSTD – Continuous STandarD distributions . 70
5.3.3 HINV – Hermite interpolation based INVersion of CDF 71
5.3.4 HRB – Hazard Rate Bounded . 74
5.3.5 HRD – Hazard Rate Decreasing . 74
5.3.6 HRI – Hazard Rate Increasing . 75
5.3.7 NINV – Numerical INVersion . 76
5.3.8 NROU – Naive Ratio-Of-Uniforms method. 78
5.3.9 SROU – Simple Ratio-Of-Uniforms method . 80
5.3.10 SSR – Simple Setup Rejection . 83
5.3.11 TABL – a TABLe method with piecewise constant hats 85
5.3.12 TDR – Transformed Density Rejection . 89
5.3.13 UTDR – Universal Transformed Density Rejection 93

5.4 Methods for continuous empirical univariate distributions. 95
5.4.1 EMPK – EMPirical distribution with Kernel smoothing 98
5.4.2 EMPL – EMPirical distribution with Linear interpolation 100

5.5 Methods for continuous multivariate distributions . 101
5.5.1 VMT – Vector Matrix Transformation . 101
5.5.2 VNROU – Multivariate Naive Ratio-Of-Uniforms method 101

5.6 Methods for continuous empirical multivariate distributions. 103
5.6.1 VEMPK – (Vector) EMPirical distribution with Kernel smoothing . . 105

5.7 Methods for discrete univariate distributions . 106
5.7.1 DARI – discrete automatic rejection inversion . 108
5.7.2 DAU – (Discrete) Alias-Urn method. 110
5.7.3 DGT – (Discrete) Guide Table method (indexed search) 111
5.7.4 DSROU – Discrete Simple Ratio-Of-Uniforms method 112
5.7.5 DSS – (Discrete) Sequential Search method . 114
5.7.6 DSTD – Discrete STandarD distributions . 114

5.8 Methods for random matrices . 115
5.8.1 MCORR – Random CORRelation matrix . 115

5.9 Methods for uniform univariate distributions . 116
5.9.1 UNIF – wrapper for UNIForm random number generator 116

6 Using uniform random number generators 117

7 UNURAN Library of standard distributions 121
7.1 UNURAN Library of continuous univariate distributions 122

7.1.1 beta – Beta distribution . 122
7.1.2 cauchy – Cauchy distribution . 122
7.1.3 chi – Chi distribution. 122
7.1.4 chisquare – Chisquare distribution . 123
7.1.5 exponential – Exponential distribution . 123
7.1.6 extremeI – Extreme value type I (Gumbel-type) distribution 123
7.1.7 extremeII – Extreme value type II (Frechet-type) distribution 124
7.1.8 gamma – Gamma distribution . 124
7.1.9 laplace – Laplace distribution . 124
7.1.10 logistic – Logistic distribution . 125
7.1.11 lomax – Lomax distribution (Pareto distribution of second kind) . . 125
7.1.12 normal – Normal distribution . 125

iii

7.1.13 pareto – Pareto distribution (of first kind) . 126
7.1.14 powerexponential – Powerexponential (Subbotin) distribution . . . 126
7.1.15 rayleigh – Rayleigh distribution . 126
7.1.16 student – Student’s t distribution . 127
7.1.17 triangular – Triangular distribution . 127
7.1.18 uniform – Uniform distribution . 127
7.1.19 weibull – Weibull distribution . 128

7.2 UNURAN Library of continuous multivariate distributions 128
7.2.1 multinormal – Multinormal distribution . 128

7.3 UNURAN Library of discrete univariate distributions . 128
7.3.1 binomial – Binomial distribution . 128
7.3.2 geometric – Geometric distribution . 129
7.3.3 hypergeometric – Hypergeometric distribution 129
7.3.4 logarithmic – Logarithmic distribution . 129
7.3.5 negativebinomial – Negative Binomial distribution 130
7.3.6 poisson – Poisson distribution . 130

7.4 UNURAN Library of random matrices . 130
7.4.1 correlation – Random correlation matrix . 130

8 Error handling . 133
8.1 Error reporting. 133
8.2 Output streams . 135

9 Debugging . 137

10 Testing . 139

11 Miscelleanous . 143
11.1 Mathematics . 143

Appendix A A Short Introduction to Random Variate
Generation . 145
A.1 The Inversion Method . 145
A.2 The Rejection Method . 146
A.3 The Composition Method . 147
A.4 The Ratio-of-Uniforms Method . 148
A.5 Inversion for Discrete Distributions . 149
A.6 Indexed Search (Guide Table Method) . 150

Appendix B Glossary . 153

Appendix C Bibliography . 155

Appendix D Function Index . 157

iv UNURAN User Manual

UNURAN – Universal Non-Uniform RANdom number generators 1

UNURAN – Universal Non-Uniform RANdom
number generators

UNURAN (Universal Non-Uniform RAndom Number generator) is a collection of algorithms
for generating non-uniform pseudorandom variates as a library of C functions designed and
implemented by the ARVAG (Automatic Random VAriate Generation) project group in Vienna,
and released under the GNU Public License (GPL). It is especially designed for such situations
where

− a non-standard distribution or a truncated distribution is needed.

− experiments with different types of distributions are made.

− random variates for variance reduction techniques are used.

− fast generators of predictable quality are necessary.

Of course it is also well suited for standard distributions. However due to its more sophisti-
cated programming interface it might not be as easy to use if you only look for a generator for
the standard normal distribution. (Although UNURAN provides generators that are superior
in many aspects to those found in quite a number of other libraries.)

UNURAN implements several methods for generating random numbers. The choice depends
primary on the information about the distribution can be provided and – if the user is familar
with the different methods – on the preferences of the user.

The design goals of UNURAN are to provide reliable, portable and robust (as far as this is
possible) functions with a consisent and easy to use interface. It is suitable for all situation where
experiments with different distributions including non-standard distributions. For example it is
no problem to replace the normal distribution by an empirical distribution in a model.

Since originally designed as a library for so called black-box or universal algorithms its in-
terface is different from other libraries. (Nevertheless it also contains special generators for
standard distributions.) It does not provide subroutines for random variate generation for par-
ticular distributions. Instead it uses an object-oriented interface. Distributions and generators
are treated as independent objects. This approach allows one not only to have different methods
for generating non-uniform random variates. It is also possible to choose the method which is
optimal for a given situation (e.g. speed, quality of random numbers, using for variance re-
duction techniques, etc.). It also allows to sample from non-standard distribution or even from
distributions that arise in a model and can only be computed in a complicated subroutine.

Sampling from a particular distribution requires the following steps:

1. Create a distribution object. (Objects for standard distributions are available in the library)

2. Choose a method.

3. Initialize the generator, i.e., create the generator object. If the choosen method is not
suitable for the given distribution (or if the distribution object contains too little information
about the distribution) the initialization routine fails and produces an error message. Thus
the generator object does (probably) not produce false results (random variates of a different
distribution).

4. Use this generator object to sample from the distribution.

There are four types of objects that can be manipulated independently:

• Distribution objects: hold all information about the random variates that should be gener-
ated. The following types of distributions are available:

− Continuous and Discrete distributions

− Empirical distributions

− Multivariate distributions

2 UNURAN User Manual

Of course a library of standard distributions is included (and these can be further modified
to get, e.g., truncated distributions). Moreover the library provides subroutines to build
almost arbitrary distributions.

• Generator objects: hold the generators for the given distributions. It is possible to build
independent generator objects for the same distribution object which might use the same
or different methods for generation. (If the choosen method is not suitable for the given
method, a NULL pointer is returned in the initialization step).

• Parameter objects: Each transformation method requires several parameters to adjust the
generator to a given distribution. The parameter object holds all this information. When
created it contains all necessary default settings. It is only used to create a generator
object and destroyed immediately. Altough there is no need to change these parameters or
even know about their existence for “usual distributions”, they allow a fine tuning of the
generator to work with distributions with some awkward properties. The library provides
all necessary functions to change these default parameters.

• Uniform Random Number Generators: All generator objects need one (or more) streams
of uniform random numbers that are transformed into random variates of the given distri-
bution. These are given as pointers to appropriate functions or structures (objects). Two
generator objects may have their own uniform random number generators or share a com-
mon one. Any functions that produce uniform (pseudo-) random numbers can be used. We
suggest Otmar Lendl’s PRNG library.

Chapter 1: Introduction 3

1 Introduction

1.1 Usage of this document

We designed this document in a way such that one can use UNURAN with reading as little
as necessary. Read Section 1.2 [Installation], page 3 for the instructions to install the library.
Section 1.4 [Concepts of UNURAN], page 5, discribes the basics of UNURAN. It also has a short
guideline for choosing an appropriate method. In Chapter 2 [Examples], page 11 examples are
given that can be copied and modified. They also can be found in the directory ‘examples’ in
the source tree.

Further information are given in consecutive chapters. Chapter 4 [Handling distribution
objects], page 43, describes how to create and manipulate distribution objects. Chapter 7
[standard distributions], page 121, describes predefined distribution objects that are ready to
use. Chapter 5 [Methods], page 63 describes the various methods in detail. For each of possible
distribution classes (continuous, discrete, empirical, multivariate) there exists a short overview
section that can be used to choose an appropriate method followed by sections that describe
each of the particular methods in detail. These are merely for users with some knowledge about
the methods who want to change method-specific parameters and can be ignored by others.

Abbreviations and explanation of some basic terms can be found in Appendix B [Glossary],
page 153.

1.2 Installation

UNURAN was developed on an Intel architecture under Linux with the GNU C compiler.

Uniform random number generator

It can be used with any uniform random number generator but (at the moment) some features
work best with Otmar Lendl’s prng library (see http://statistik.wu-wien.ac.at/prng/ for
description and downloading). For more details on using uniform random number in UNURAN
see Chapter 6 [Using uniform random number generators], page 117.

UNURAN

1. First unzip and untar the package and change to the directory:
tar zxvf unuran-0.5.0.tar.gz

cd unuran-0.5.0

2. Edit the file ‘src/unuran_config.h’. Set the appropriate source of uniform random num-
bers: #define UNUR_URNG_TYPE (see Chapter 6 [URNG], page 117 for details).
Important: If neither UNUR_URNG_FVOID nor UNUR_URNG_GENERIC is used, check if the cor-
responding library is installed.

3. Run a configuration script:
sh ./configure --prefix=<prefix>

where <prefix> is the root of the installation tree. When omitted ‘/usr/local’ is used.
Use configure --help to get a list of other options.
Important: You must install PRNG before configure is executed.
Important: UNU.RAN now relies on some aspects of IEEE 754 compliant floating point
arithmetic. In particular, 1./0. and 0./0. must result in infinity and NaN (not a number),

4 UNURAN User Manual

respectively, and must not cause a floating point exception. For allmost all modern compting
architecture this is implemented in hardware. For others there should be a special compiler
flag to get this feature (e.g. -MIEEE on DEC alpha).

4. Compile and install the libray:
make

make install

This installs the following files:
$(prefix)/include/unuran.h

$(prefix)/include/unuran_config.h

$(prefix)/include/unuran_tests.h

$(prefix)/info/unuran.info

$(prefix)/lib/libunuran.a

$(prefix)/lib/libunuran.so

(However, the names of the libraries may vary with your OS.)
Obviously $(prefix)/include and $(prefix)/lib must be in the search path of your
compiler. You can use environment variables to add these directories to the search path. If
you are using the bash type (or add to your profile):

export LIBRARY_PATH="<prefix>/lib"

export C_INCLURE_PATH="<prefix>/include"

If you want to link against the shared library make sure that it can be found when executing
the binary that links to the library. If it is not installed in the usual path, then the
easiest way is to set the LD_LIBRARY_PATH environment variable. See any operating system
documentation about shared libraries for more information, such as the ld(1) and ld.so(8)
manual pages.
If you do not want to make a shared library, than making such a library can be disabled
using

sh ./configure --disable-shared

5. Documentation in various formats (PS, PDF, info, dvi, HTML, plain text) can be found in
the directory ‘doc’.

6. You can run some tests my
make check

However, this test suite requires the usage of prng. It might happen that some of the tests
might fail due to roundoff errors or the mysteries of floating point arithmetic, since we have
used some extreme settings to test the library.

1.3 Using the library

ANSI C Compliance

The library is written in ANSI C and is intended to conform to the ANSI C standard. It
should be portable to any system with a working ANSI C compiler.

The library does not rely on any non-ANSI extensions in the interface it exports to the user.
Programs you write using UNURAN can be ANSI compliant. Extensions which can be used in
a way compatible with pure ANSI C are supported, however, via conditional compilation. This
allows the library to take advantage of compiler extensions on those platforms which support
them.

To avoid namespace conflicts all exported function names and variables have the prefix unur_,
while exported macros have the prefix UNUR_.

Chapter 1: Introduction 5

Compiling and Linking

If you want to use the library you must include the UNURAN header file
#include <unuran.h>

If you also need the test routines then also add
#include <unuran_tests.h>

If these header files are not installed on the standard search path of your compiler you will also
need to provide its location to the preprocessor as a command line flag. The default location
of the ‘unuran.h’ is ‘/usr/local/include’. A typical compilation command for a source file
‘app.c’ with the GNU C compiler gcc is,

gcc -I/usr/local/include -c app.c

This results in an object file ‘app.o’. The default include path for gcc searches
‘/usr/local/include’ automatically so the -I option can be omitted when UNURAN is
installed in its default location.

The library is installed as a single file, ‘libunuran.a’. A shared version of the library
is also installed on systems that support shared libraries. The default location of these files
is ‘/usr/local/lib’. To link against the library you need to specify the main library. The
following example shows how to link an application with the library (and the the PRNG library
if you decide to use this source of uniform pseudo-random numbers),

gcc app.o -lunuran -lprng -lm

Shared Libraries

To run a program linked with the shared version of the library it may be necessary to define
the shell variable LD_LIBRARY_PATH to include the directory where the library is installed. For
example,

LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH ./app

To compile a statically linked version of the program instead, use the -static flag in gcc,
gcc -static app.o -lunuran -lprng -lm

Compatibility with C++

The library header files automatically define functions to have extern "C" linkage when
included in C++ programs.

1.4 Concepts of UNURAN

UNURAN is a C library for generating non-uniformly distributed random variates. Its em-
phasis is on the generation of non-standard distribution and on streams of random variates of
special purposes. It is designed to provide a consistent tool to sample from distributions with
various properties. Since there is no universal method that fits for all situations, various methods
for sampling are implemented.

UNURAN solves this complex task by means of an object oriented programming interface.
Three basic objects are used:
• distribution object UNUR_DISTR

Hold all information about the random variates that should be generated.
• generator object UNUR_GEN

Hold the generators for the given distributions. Two generator objects are completely
independent of each other. They may share a common uniform random number generator
or have their owns.

6 UNURAN User Manual

• parameter object UNUR_PAR
Hold all information for creating a generator object. It is necessary due to various param-
eters and switches for each of these generation methods.

For programming notice that the parameter objects only hold pointer to arrays but do not
have their own copy of such an array. Especially, if a dynamically allocated array is used it
must not be freed until the generator object has been created!

The idea behind these structures is to make distributions, choosing a generation method
and sampling to orthogonal (ie. independent) functions of the library. The parameter object is
only introduced due to the necessity to deal with various parameters and switches for each of
these generation methods which are required to adjust the algorithms to unusual distributions
with extreme properties but have defaut values that are suitable for most applications. These
parameters and the data for distributions are set by various functions.

Once a generator object has been created sampling (from the univariate continuous distribu-
tion) can be done by the following command:

double x = unur_sample_cont(generator);

Analogous commands exist for discrete and multivariate distributions. For detailed examples
that can be copied and modified see Chapter 2 [Examples], page 11.

Distribution objects

All information about a distribution are stored in objects (structures) of type UNUR_DISTR.
UNURAN has five different types of distribution objects:

cont Continuous univariate distributions.

cvec Continuous multivariate distributions.

discr Discrete univariate distributions.

cemp Continuous empirical univariate distribution, ie. given by sample.

cvemp Continuous empirical multivariate distribution, ie. given by sample.

Distribution objects can be created from scratch by the following call

distr = unur_distr_<type>_new();

where <type> is one of the five possible types from the above table. Notice that these commands
only create an empty object which still must be filled by means of calls for each type of distri-
bution object (see Chapter 4 [Handling distribution objects], page 43). The naming scheme of
these functions is designed to indicate the corresponding type of the distribution object and the
task to be performed. It is demonstated on the following example.

unur_distr_cont_set_pdf(distr, mypdf);

This command stores a PDF named mypdf in the distribution object distr which must have
the type cont.

Of course UNURAN provides an easier way to use standard distribution. Instead of using
unur_distr_<type>_new calls and fuctions unur_distr_<type>_set_<...> for setting data
objects for standard distribution can be created by a single call. Eg. to get an object for the
normal distribution with mean 2 and standard deviation 5 use

double parameter[2] = {2.0 ,5.0};
UNUR_DISTR *distr = unur_distr_normal(parameter, 2);

For a list of standard distributions see Chapter 7 [Standard distributions], page 121.

Chapter 1: Introduction 7

Generation methods

The information a distribution object must contain depends heavily on the method choosen
for sampling random variates.

Brackets indicate optional information while a tilde indicates that only an approximation
must be provided. See Appendix B [Glossary], page 153, for unfamiliar terms.

� �
Methods for continuous univariate distributions
sample with unur_sample_cont

method PDF dPDF mode area other
AROU x x [x] T-concave
CSTD build-in standard distribution
HINV [x] [x] CDF
NINV [x] CDF
SROU x x T-concave
SSR x x T-concave
TABLE x x [~] all local extrema
TDR x x T-concave
UTDR x x ~ T-concave
 	

� �
Methods for continuous empirical univariate distributions
sample with unur_sample_cont

EMPK: Requires an observed sample. EMPL: Requires an observed sample.
 	
� �
Methods for continuous multivariate distributions
sample with unur_sample_vec

VMT: Requires the mean vector and the covariance matrix. VNROU: Requires the PDF.
 	
� �
Methods for continuous empirical multivariate distributions
sample with unur_sample_vec

VEMPK: Requires an observed sample.
 	

8 UNURAN User Manual� �
Methods for discrete univariate distributions
sample with unur_sample_discr

method PMF PV mode sum other
DARI x x ~ T-concave
DAU [x] x
DGT [x] x
DSTD build-in standard distribution
DSS [x] x x
 	

Because of tremendous variety of possible problems, UNURAN provides many methods. All
information for creating an generator object have to collected in a parameter first. For example
if the task is to sample from a continuous distribution the method AROU might be a good
choice. Then the call

UNUR_PAR *par = unur_arou_new(distribution);

creates an parameter object par with a pointer to the distribution object and default values for
all necessary parameters for method AROU. Other methods can be used by replacing arou with
the name of the desired methods (in lower case letters):

UNUR_PAR *par = unur_<method>_new(distribution);

This sets the default values for all necessary parameters for the chosen methods. These are
suitable for almost all applications. Nevertheless it is possible to control the behaviour of the
method using corresponding set calls for each method. This might be necessary to adjust
the algorithm for an unusual distribution with extreme properties, or just for fine tuning the
perforence of the algorithm. The following example demonstrates how to change the maximum
number of iterations for method NINV to the value 50:

unur_ninv_set_max_iteration(par, 50);

All available methods are described in details in Chapter 5 [Methods], page 63.

Creating a generator object

Now it is possible to create a generator object:

UNUR_GEN *generator = unur_init(par);
if (generator == NULL) exit(EXIT_FAILURE);

Important: You must always check whether unur_init has been executed successfully. Other-
wise the NULL pointer is returned which causes a segmentation fault when used for sampling.

Important: The call of unur_init destroys the parameter object!
Moreover it is recommended to call unur_init immediately after the parameter object par has
created and modified.

An existing generator object is a rather static construct. Nevertheless some of the parameters
can still be modified by chg calls, e.g.

unur_ninv_chg_max_iteration(gen, 30);

Notice that it is important when pararameters are changed because different functions must
be used:

To change the parameters before creating the generator object, the function name includes
the term set and the first argument must be of type UNUR_PAR.

Chapter 1: Introduction 9

To change the parameters for an existing generator object, the function name includes the
term chg and the first argument must be of type UNUR_GEN.

For details see Chapter 5 [Methods], page 63.

Sampling

You can now use your generator object in any place of your program to sample from your
distribution. You only have take about the type of number it computes: double, int or a vector
(array of doubles). Notice that at this point it does not matter whether you are sampling from
a gamma distribution, a truncated normal distribution or even an empirical distribution.

Destroy

When you do not need your generator object any more, you should destroy it:
unur_free(generator);

Uniform random numbers

Each generator object can have its own uniform random number generator or share one with
others. When created a parameter object the pointer for the uniform random number generator
is set to the default generator. However it can be changed at any time to any other generator:

unur_set_urng(par, urng);

or
unur_chg_urng(generator, urng);

respectively. See Chapter 6 [Using uniform random number generators], page 117, for details.

1.5 Contact the authors

If you have any problems with UNURAN, suggestions how to improve the library or find a
bug, please contact us via email unuran@statistik.wu-wien.ac.at.

For news please visit out homepage at http://statistik.wu-wien.ac.at/unuran/.

mailto:unuran@statistik.wu-wien.ac.at
http://statistik.wu-wien.ac.at/unuran/

10 UNURAN User Manual

Chapter 2: Examples 11

2 Examples

The examples in this chapter should compile cleanly and can be found in the directory
‘examples’ of the source tree of UNURAN. Assuming that UNURAN as well as the PRNG
libraries have been installed properly (see Section 1.2 [Installation], page 3) each of these can be
compiled (using the GCC in this example) with

gcc -Wall -O2 -o example example.c -lunuran -lprng -lm

Remark: -lprng must be omitted when the PRNG library is not installed. Then however some
of the examples might not work.

The library uses three objects: UNUR_DISTR, UNUR_PAR and UNUR_GEN. It is not important
to understand the details of these objects but it is important not to changed the order of their
creation. The distribution object can be destroyed after the generator object has been made.
(The parameter object is freed automatically by the unur_init call.) It is also important to
check the result of the unur_init call. If it has failed the NULL pointer is returned and causes
a segmentation fault when used for sampling.

We give all examples with the UNURAN standard API and the more convenient string API.

2.1 As short as possible

Select a distribution and let UNURAN do all necessary steps.
/* --- */

/* File: example0.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

int main()

{

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen; /* generator object */

/* Use a predefined standard distribution: */

/* Gaussian with mean zero and standard deviation 1. */

/* Since this is the standard form of the distribution, */

/* we need not give these parameters. */

distr = unur_distr_normal(NULL, 0);

/* Use method AUTO: */

/* Let UNURAN select a suitable method for you. */

par = unur_auto_new(distr);

/* Now you can change some of the default settings for the */

/* parameters of the chosen method. We don’t do it here. */

/* Create the generator object. */

gen = unur_init(par);

/* Notice that this call has also destroyed the parameter */

/* object ‘par’ as a side effect. */

12 UNURAN User Manual

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* It is possible to reuse the distribution object to create */

/* another generator object. If you do not need it any more, */

/* it should be destroyed to free memory. */

unur_distr_free(distr);

/* Now you can use the generator object ‘gen’ to sample from */

/* the standard Gaussian distribution. */

/* Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

2.2 As short as possible (String API)

Select a distribution and let UNURAN do all necessary steps.
/* --- */

/* File: example0_str.c */

/* --- */

/* String API. */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

int main()

{

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare UNURAN generator object. */

UNUR_GEN *gen; /* generator object */

/* Create the generator object. */

/* Use a predefined standard distribution: */

/* Standard Gaussian distribution. */

/* Use method AUTO: */

/* Let UNURAN select a suitable method for you. */

gen = unur_str2gen("normal()");

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

Chapter 2: Examples 13

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* Now you can use the generator object ‘gen’ to sample from */

/* the standard Gaussian distribution. */

/* Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

2.3 Select a method

Select method AROU and use it with default parameters.
/* --- */

/* File: example1.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

int main()

{

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen; /* generator object */

/* Use a predefined standard distribution: */

/* Gaussian with mean zero and standard deviation 1. */

/* Since this is the standard form of the distribution, */

/* we need not give these parameters. */

distr = unur_distr_normal(NULL, 0);

/* Choose a method: AROU. */

/* For other (suitable) methods replace "arou" with the */

/* respective name (in lower case letters). */

par = unur_arou_new(distr);

/* Now you can change some of the default settings for the */

/* parameters of the chosen method. We don’t do it here. */

/* Create the generator object. */

gen = unur_init(par);

14 UNURAN User Manual

/* Notice that this call has also destroyed the parameter */

/* object ‘par’ as a side effect. */

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* It is possible to reuse the distribution object to create */

/* another generator object. If you do not need it any more, */

/* it should be destroyed to free memory. */

unur_distr_free(distr);

/* Now you can use the generator object ‘gen’ to sample from */

/* the standard Gaussian distribution. */

/* Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

2.4 Select a method (String API)

Select method AROU and use it with default parameters.
/* --- */

/* File: example1_str.c */

/* --- */

/* String API. */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

int main()

{

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare UNURAN generator object. */

UNUR_GEN *gen; /* generator object */

/* Create the generator object. */

/* Use a predefined standard distribution: */

/* Standard Gaussian distribution. */

/* Choose a method: AROU. */

/* For other (suitable) methods replace "arou" with the */

Chapter 2: Examples 15

/* respective name. */

gen = unur_str2gen("normal() & method=arou");

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* Now you can use the generator object ‘gen’ to sample from */

/* the standard Gaussian distribution. */

/* Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

2.5 Arbitrary distributions

If you want to sample from a non-standard distribution, UNURAN might be exactly what
you need. Depending on the information is available, a method must be choosen for sampling,
see Section 1.4 [Concepts], page 5 for an overview and Chapter 5 [Methods], page 63 for details.

/* --- */

/* File: example2.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* In this example we build a distribution object from scratch */

/* and sample from this distribution. */

/* */

/* We use method TDR (Transformed Density Rejection) which */

/* required a PDF and the derivative of the PDF. */

/* --- */

/* Define the PDF and dPDF of our distribution. */

/* */

/* Our distribution has the PDF */

/* */

/* / 1 - x*x if |x| <= 1 */

/* f(x) = < */

/* \ 0 otherwise */

/* */

/* The PDF of our distribution: */

16 UNURAN User Manual

double mypdf(double x, const UNUR_DISTR *distr)

/* The second argument (‘distr’) can be used for parameters */

/* for the PDF. (We do not use parameters in our example.) */

{

if (fabs(x) >= 1.)

return 0.;

else

return (1.-x*x);

} /* end of mypdf() */

/* The derivative of the PDF of our distribution: */

double mydpdf(double x, const UNUR_DISTR *distr)

{

if (fabs(x) >= 1.)

return 0.;

else

return (-2.*x);

} /* end of mydpdf() */

/* --- */

int main()

{

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen; /* generator object */

/* Create a new distribution object from scratch. */

/* It is a continuous distribution, and we need a PDF and the */

/* derivative of the PDF. Moreover we set the domain. */

/* Get empty distribution object for a continuous distribution */

distr = unur_distr_cont_new();

/* Assign the PDF and dPDF (defined above). */

unur_distr_cont_set_pdf(distr, mypdf);

unur_distr_cont_set_dpdf(distr, mydpdf);

/* Set the domain of the distribution (optional for TDR). */

unur_distr_cont_set_domain(distr, -1., 1.);

/* Choose a method: TDR. */

par = unur_tdr_new(distr);

/* Now you can change some of the default settings for the */

/* parameters of the chosen method. We don’t do it here. */

/* Create the generator object. */

gen = unur_init(par);

/* Notice that this call has also destroyed the parameter */

/* object ‘par’ as a side effect. */

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

Chapter 2: Examples 17

/* It is possible to reuse the distribution object to create */

/* another generator object. If you do not need it any more, */

/* it should be destroyed to free memory. */

unur_distr_free(distr);

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

2.6 Arbitrary distributions (String API)

If you want to sample from a non-standard distribution, UNURAN might be exactly what
you need. Depending on the information is available, a method must be choosen for sampling,
see Section 1.4 [Concepts], page 5 for an overview and Chapter 5 [Methods], page 63 for details.

/* --- */

/* File: example2_str.c */

/* --- */

/* String API. */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* In this example we use a generic distribution object */

/* and sample from this distribution. */

/* */

/* The PDF of our distribution is given by */

/* */

/* / 1 - x*x if |x| <= 1 */

/* f(x) = < */

/* \ 0 otherwise */

/* */

/* We use method TDR (Transformed Density Rejection) which */

/* required a PDF and the derivative of the PDF. */

/* --- */

int main()

{

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare UNURAN generator object. */

UNUR_GEN *gen; /* generator object */

18 UNURAN User Manual

/* Create the generator object. */

/* Use a generic continuous distribution. */

/* Choose a method: TDR. */

gen = unur_str2gen("distr = cont; pdf=\"1-x*x\"; domain=(-1,1) & method=tdr");

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

2.7 Change parameters of the method

Each method for generating random numbers allows several parameters to be modified. If
you do not want to use default values, it is possible to change them. The following example
illustrates how to change parameters. For details see Chapter 5 [Methods], page 63.

/* --- */

/* File: example3.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

int main()

{

int i; /* loop variable */

double x; /* will hold the random number */

double fparams[2]; /* array for parameters for distribution */

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen; /* generator object */

/* Use a predefined standard distribution: */

/* Gaussian with mean 2. and standard deviation 0.5. */

fparams[0] = 2.;

fparams[1] = 0.5;

Chapter 2: Examples 19

distr = unur_distr_normal(fparams, 2);

/* Choose a method: TDR. */

par = unur_tdr_new(distr);

/* Change some of the default parameters. */

/* We want to use T(x)=log(x) for the transformation. */

unur_tdr_set_c(par, 0.);

/* We want to have the variant with immediate acceptance. */

unur_tdr_set_variant_ia(par);

/* We want to use 10 construction points for the setup */

unur_tdr_set_cpoints (par, 10, NULL);

/* Create the generator object. */

gen = unur_init(par);

/* Notice that this call has also destroyed the parameter */

/* object ‘par’ as a side effect. */

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* It is possible to reuse the distribution object to create */

/* another generator object. If you do not need it any more, */

/* it should be destroyed to free memory. */

unur_distr_free(distr);

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* It is possible with method TDR to truncate the distribution */

/* for an existing generator object ... */

unur_tdr_chg_truncated(gen, -1., 0.);

/* ... and sample again. */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

20 UNURAN User Manual

2.8 Change parameters of the method (String API)

Each method for generating random numbers allows several parameters to be modified. If
you do not want to use default values, it is possible to change them. The following example
illustrates how to change parameters. For details see Chapter 5 [Methods], page 63.

/* --- */

/* File: example3_str.c */

/* --- */

/* String API. */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

int main()

{

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare UNURAN generator object. */

UNUR_GEN *gen; /* generator object */

/* Create the generator object. */

/* Use a predefined standard distribution: */

/* Gaussian with mean 2. and standard deviation 0.5. */

/* Choose a method: TDR with parameters */

/* c = 0: use T(x)=log(x) for the transformation; */

/* variant "immediate acceptance"; */

/* number of construction points = 10. */

gen = unur_str2gen("normal(2,0.5) & method=tdr; c=0.; variant_ia; cpoints=10");

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* It is possible with method TDR to truncate the distribution */

/* for an existing generator object ... */

unur_tdr_chg_truncated(gen, -1., 0.);

/* ... and sample again. */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

Chapter 2: Examples 21

} /* end of main() */

/* --- */

2.9 Change uniform random generator

All generator object use the same default uniform random number generator by default.
This can be changed to any generator of your choice such that each generator object has its own
random number generator or can share it with some other objects. It is also possible to change
the default generator at any time. See Chapter 6 [Using uniform random number generators],
page 117, for details.

The following example shows how the uniform random number generator can be set or
changed for a generator object. It requires the PRNG library to be installed and used. Otherwise
the example must be modified accordingly.

/* --- */

/* File: example4.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* This example makes use of the PRNG library (see */

/* http://statistik.wu-wien.ac.at/prng/) for generating */

/* uniform random numbers. */

/* To compile this example you must have set */

/* #define UNUR_URNG_TYPE UNUR_URNG_PRNG */

/* in ‘src/unuran_config.h’. */

/* It also works with necessary modifications with other uniform */

/* random number generators. */

/* --- */

int main()

{

#if UNUR_URNG_TYPE == UNUR_URNG_PRNG

int i; /* loop variable */

double x; /* will hold the random number */

double fparams[2]; /* array for parameters for distribution */

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen; /* generator object */

/* Declare objects for uniform random number generators. */

UNUR_URNG *urng1, *urng2; /* uniform generator objects */

/* PRNG only: */

/* Make a object for uniform random number generator. */

/* For details see http://statistik.wu-wien.ac.at/prng/ */

/* We use the Mersenne Twister. */

urng1 = prng_new("mt19937(1237)");

if (urng1 == NULL) exit (EXIT_FAILURE);

/* Use a predefined standard distribution: */

/* Beta with parameters 2 and 3. */

22 UNURAN User Manual

fparams[0] = 2.;

fparams[1] = 3.;

distr = unur_distr_beta(fparams, 2);

/* Choose a method: TDR. */

par = unur_tdr_new(distr);

/* Set uniform generator in parameter object */

unur_set_urng(par, urng1);

/* Create the generator object. */

gen = unur_init(par);

/* Notice that this call has also destroyed the parameter */

/* object ‘par’ as a side effect. */

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* It is possible to reuse the distribution object to create */

/* another generator object. If you do not need it any more, */

/* it should be destroyed to free memory. */

unur_distr_free(distr);

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* Now we want to switch to a different uniform random number */

/* generator. */

/* Now we use an ICG (Inversive Congruental Generator). */

urng2 = prng_new("icg(2147483647,1,1,0)");

if (urng2 == NULL) exit (EXIT_FAILURE);

unur_chg_urng(gen, urng2);

/* ... and sample again. */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

/* We also should destroy the uniform random number generators.*/

prng_free(urng1);

prng_free(urng2);

exit (EXIT_SUCCESS);

#else

printf("You must use the PRNG library to run this example!\n\n");

exit (77); /* exit code for automake check routines */

#endif

} /* end of main() */

Chapter 2: Examples 23

/* --- */

2.10 Change uniform random generator (String API)

All generator object use the same default uniform random number generator by default.
This can be changed to any generator of your choice such that each generator object has its own
random number generator or can share it with some other objects. It is also possible to change
the default generator at any time. See Chapter 6 [Using uniform random number generators],
page 117, for details.

The following example shows how the uniform random number generator can be set or
changed for a generator object. It requires the PRNG library to be installed and used. Otherwise
the example must be modified accordingly.

/* --- */

/* File: example4_str.c */

/* --- */

/* String API. */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* This example makes use of the PRNG library (see */

/* http://statistik.wu-wien.ac.at/prng/) for generating */

/* uniform random numbers. */

/* To compile this example you must have set */

/* #define UNUR_URNG_TYPE UNUR_URNG_PRNG */

/* in ‘src/unuran_config.h’. */

/* It also works with necessary modifications with other uniform */

/* random number generators. */

/* --- */

int main()

{

#if UNUR_URNG_TYPE == UNUR_URNG_PRNG

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare UNURAN generator object. */

UNUR_GEN *gen; /* generator object */

/* Declare objects for uniform random number generators. */

UNUR_URNG *urng1, *urng2; /* uniform generator objects */

/* Create the generator object. */

/* Use a predefined standard distribution: */

/* Beta with parameters 2 and 3. */

/* Choose a method: TDR. */

/* Use the Mersenne Twister for unifrom random number */

/* generator (requires PRNG library). */

gen = unur_str2gen("beta(2,3) & method=tdr & urng = mt19937(1237)");

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

24 UNURAN User Manual

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* Now we want to switch to a different uniform random number */

/* generator. */

/* Now we use an ICG (Inversive Congruental Generator). */

urng2 = prng_new("icg(2147483647,1,1,0)");

if (urng2 == NULL) exit (EXIT_FAILURE);

/* Change uniform random number generator. */

/* Notice however that we should save the pointer to uniform */

/* random number generator in the generator object. */

urng1 = unur_chg_urng(gen, urng2);

/* ... and sample again. */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

/* We also should destroy the uniform random number generators.*/

prng_free(urng1);

prng_free(urng2);

exit (EXIT_SUCCESS);

#else

printf("You must use the PRNG library to run this example!\n\n");

exit (77); /* exit code for automake check routines */

#endif

} /* end of main() */

/* --- */

2.11 Sample pairs of antithetic random variates

Using Method TDR it is easy to sample pairs of antithetic random variates.
/* --- */

/* File: example_anti.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* Example how to sample from two streams of antithetic random */

/* variates from Gaussian N(2,5) and Gamma(4) distribution, resp.*/

Chapter 2: Examples 25

/* --- */

/* This example makes use of the PRNG library (see */

/* http://statistik.wu-wien.ac.at/prng/) for generating */

/* uniform random numbers. */

/* To compile this example you must have set */

/* #define UNUR_URNG_TYPE UNUR_URNG_PRNG */

/* in ‘src/unuran_config.h’. */

/* It also works with necessary modifications with other uniform */

/* random number generators. */

/* --- */

int main()

{

#if UNUR_URNG_TYPE == UNUR_URNG_PRNG

int i; /* loop variable */

double xn, xg; /* will hold the random number */

double fparams[2]; /* array for parameters for distribution */

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen_normal, *gen_gamma;

/* generator objects */

/* Declare objects for uniform random number generators. */

UNUR_URNG *urng1, *urng2; /* uniform generator objects */

/* PRNG only: */

/* Make a object for uniform random number generator. */

/* For details see http://statistik.wu-wien.ac.at/prng/. */

/* The first generator: Gaussian N(2,5) */

/* uniform generator: We use the Mersenne Twister. */

urng1 = prng_new("mt19937(1237)");

if (urng1 == NULL) exit (EXIT_FAILURE);

/* UNURAN generator object for N(2,5) */

fparams[0] = 2.;

fparams[1] = 5.;

distr = unur_distr_normal(fparams, 2);

/* Choose method TDR with variant PS. */

par = unur_tdr_new(distr);

unur_tdr_set_variant_ps(par);

/* Set uniform generator in parameter object. */

unur_set_urng(par, urng1);

/* Set auxilliary uniform random number generator. */

/* We use the default generator. */

unur_use_urng_aux_default(par);

/* Alternatively you can create and use your own auxilliary */

/* uniform random number generator: */

/* UNUR_URNG *urng_aux; */

/* urng_aux = prng_new("tt800"); */

/* if (urng_aux == NULL) exit (EXIT_FAILURE); */

/* unur_set_urng_aux(par, urng_aux); */

26 UNURAN User Manual

/* Create the generator object. */

gen_normal = unur_init(par);

if (gen_normal == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* Destroy distribution object (gen_normal has its own copy). */

unur_distr_free(distr);

/* The second generator: Gamma(4) with antithetic variates. */

/* uniform generator: We use the Mersenne Twister. */

urng2 = prng_new("anti(mt19937(1237))");

if (urng2 == NULL) exit (EXIT_FAILURE);

/* UNURAN generator object for gamma(4) */

fparams[0] = 4.;

distr = unur_distr_gamma(fparams, 1);

/* Choose method TDR with variant PS. */

par = unur_tdr_new(distr);

unur_tdr_set_variant_ps(par);

/* Set uniform generator in parameter object. */

unur_set_urng(par, urng2);

/* Set auxilliary uniform random number generator. */

/* We use the default generator. */

unur_use_urng_aux_default(par);

/* Alternatively you can create and use your own auxilliary */

/* uniform random number generator (see above). */

/* Notice that both generator objects gen_normal and */

/* gen_gamma can share the same auxilliary URNG. */

/* Create the generator object. */

gen_gamma = unur_init(par);

if (gen_gamma == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* Destroy distribution object (gen_normal has its own copy). */

unur_distr_free(distr);

/* Now we can sample pairs of negatively correlated random */

/* variates. E.g.: */

for (i=0; i<10; i++) {

xn = unur_sample_cont(gen_normal);

xg = unur_sample_cont(gen_gamma);

printf("%g, %g\n",xn,xg);

}

/* When you do not need the generator objects any more, you */

/* can destroy it. */

unur_free(gen_normal);

unur_free(gen_gamma);

/* We also should destroy the uniform random number generators.*/

prng_free(urng1);

prng_free(urng2);

Chapter 2: Examples 27

exit (EXIT_SUCCESS);

#else

printf("You must use the PRNG library to run this example!\n\n");

exit (77); /* exit code for automake check routines */

#endif

} /* end of main() */

/* --- */

2.12 Sample pairs of antithetic random variates (String API)

Using Method TDR it is easy to sample pairs of antithetic random variates.
/* --- */

/* File: example_anti_str.c */

/* --- */

/* String API. */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* Example how to sample from two streams of antithetic random */

/* variates from Gaussian N(2,5) and Gamma(4) distribution, resp.*/

/* --- */

/* This example makes use of the PRNG library (see */

/* http://statistik.wu-wien.ac.at/prng/) for generating */

/* uniform random numbers. */

/* To compile this example you must have set */

/* #define UNUR_URNG_TYPE UNUR_URNG_PRNG */

/* in ‘src/unuran_config.h’. */

/* It also works with necessary modifications with other uniform */

/* random number generators. */

/* --- */

int main()

{

#if UNUR_URNG_TYPE == UNUR_URNG_PRNG

int i; /* loop variable */

double xn, xg; /* will hold the random number */

/* Declare UNURAN generator objects. */

UNUR_GEN *gen_normal, *gen_gamma;

/* PRNG only: */

/* Make a object for uniform random number generator. */

/* For details see http://statistik.wu-wien.ac.at/prng/. */

/* Create the first generator: Gaussian N(2,5) */

gen_normal = unur_str2gen("normal(2,5) & method=tdr; variant_ps & urng=mt19937(1237)");

if (gen_normal == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

28 UNURAN User Manual

/* Set auxilliary uniform random number generator. */

/* We use the default generator. */

unur_chgto_urng_aux_default(gen_normal);

/* The second generator: Gamma(4) with antithetic variates. */

gen_gamma = unur_str2gen("gamma(4) & method=tdr; variant_ps & urng=anti(mt19937(1237))");

if (gen_gamma == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

unur_chgto_urng_aux_default(gen_gamma);

/* Now we can sample pairs of negatively correlated random */

/* variates. E.g.: */

for (i=0; i<10; i++) {

xn = unur_sample_cont(gen_normal);

xg = unur_sample_cont(gen_gamma);

printf("%g, %g\n",xn,xg);

}

/* When you do not need the generator objects any more, you */

/* can destroy it. */

/* But first we have to destroy the uniform random number */

/* generators. */

prng_free(unur_get_urng(gen_normal));

prng_free(unur_get_urng(gen_gamma));

unur_free(gen_normal);

unur_free(gen_gamma);

exit (EXIT_SUCCESS);

#else

printf("You must use the PRNG library to run this example!\n\n");

exit (77); /* exit code for automake check routines */

#endif

} /* end of main() */

/* --- */

2.13 More examples

See Section 5.3 [Methods for continuous univariate distributions], page 64.
See Section 5.4 [Methods for continuous empirical univariate distributions], page 96.
See Section 5.6 [Methods for continuous empirical multivariate distributions], page 103.
See Section 5.7 [Methods for discrete univariate distributions], page 106.

Chapter 3: String Interface 29

3 String Interface

The string interface (string API) provided by the unur_str2gen call is the easiest way to use
UNURAN. This function takes a character string as its argument. The string is parsed and the
information obtained is used to create a generator object. It returns NULL if this fails, either due
to a syntax error, or due to invalid data. In both cases unur_error is set to the corresponding
error codes (see Section 8.1 [Error reporting], page 133). Additionally there exists the call
unur_str2distr that only produces a distribution object.

Notice that the string interface does not implement all features of the UNURAN library. For
trickier tasks it might be necessary to use the UNURAN calls.

In Chapter 2 [Examples], page 11, all examples are given using both the UNURAN standard
API and this convenient string API. The corresponding programm codes are equivalent.

Function reference

[–]UNUR_GEN* unur str2gen (const char* string)
Get a generator object for the distribution, method and uniform random number generator
as described in the given string. See Section 3.1 [Syntax of String Interface], page 29, for
details.

[–]UNUR_DISTR* unur str2distr (const char* string)
Get a distribution object for the distribution described in string. See Section 3.1 [Syntax of
String Interface], page 29, and Section 3.2 [Distribution String], page 31, for details. However,
only the block for the distribution object is allowed.

3.1 Syntax of String Interface

The given string holds information about the requested distribution and (optional) about
the sampling method and the uniform random number generator invoked. The interpretation
of the string is not case-sensitive, all white spaces are ignored.

The string consists of up to three blocks, separated by ampersands &.
Each block consists of <key>=<value> pairs, separated by semicolons ;.
The first key in each block is used to indicate each block. We have three different blocks with

the following (first) keys:

distr definition of the distribution (see Section 3.2 [Distribution String], page 31).

method description of the transformation method (see Section 3.4 [Method String], page 35).

urng uniform random number generation (see Section 3.5 [Uniform RNG String], page 41).

The distr block must be the very first block and is obligatory. All the other blocks are
optional and can be arranged in arbitrary order.

For details see the following description of each block.
In the following example

distr = normal(3.,0.75); domain = (0,inf) & method = tdr; c = 0

we have a distribution block for the truncated normal distribution with mean 3 and standard
deviation 0.75 on domain (0,infinity); and block for choosing method TDR with parameter c set
to 0.

The <key>=<value> pairs that follow the first (initial) pair in each block are used to set
parameters. The name of the parameter is given by the <key> string. It is deduced from the

30 UNURAN User Manual

UNURAN set calls by taking the part after ..._set_. The <value> string holds the parameters
to be set, separated by commata ,. There are three types of parameters:

string "..."
i.e. any sequence of characters enclosed by double quotes "...",

list (...,...)
i.e. list of numbers, separated by commata ,, enclosed in parenthesis (...), and

number a sequence of characters that is not enclosed by quotes "..." or parenthesis (...).
It is interpreted as float or integer depending on the type of the corresponding
parameter.

The <value> string (including the character =) can be omitted when no argument is required.

At the moment not all set calls are supported. The syntax for the <value> can be directly
derived from the corresponding set calls. To simplify the syntax additional shortcuts are pos-
sible. The following table lists the parameters for the set calls that are supported by the string
interface; the entry in parenthesis gives the type of the argument as <value> string:

int (number):
The number is interpreted as an integer. true and on are transformed to 1, false
and off are transformed to 0. A missing argument is interpreted as 1.

int, int (number, number or list):
The two numbers or the first two entries in the list are interpreted as a integers.
inf and -inf are transformed to INT_MAX and INT_MIN respectively, i.e. the largest
and smallest integers that can be represented by the computer.

unsigned (number):
The number is interpreted as an unsigned hexadecimal integer.

double (number):
The number is interpreted as a floating point number. inf is transformed to UNUR_
INFINITY.

double, double (number, number or list):
The two numbers or the first two entries in the list are interpreted as a floating
point numbers. inf is transformed to UNUR_INFINITY. However using inf in the
list might not work for all versions of C. Then it is recommended to use two single
numbers instead of a list.

int, double* ([number,] list or number):
− The list is interpreted as a double array. The (first) number as its length. If

it is less than the actual size of the array only the first entries of the array are
used.

− If only the list is given (i.e., if the first number is omitted), the first number is
set to the actual size of the array.

− If only the number is given (i.e., if the list is omitted), the NULL pointer is used
instead an array as argument.

double*, int (list [,number]):
The list is interpreted as a double array. The (second) number as its length. If
the length is omitted, it is replaced by the actual size of the array. (Only in the
distribution block!)

char* (string):
The character string is passed as is to the corresponding set call.

Chapter 3: String Interface 31

Notice that missing entries in a list of numbers are interpreted as 0. E.g, a the list (1,,3)
is read as (1,0,3), the list (1,2,) as (1,2,0).

The the list of key strings in Section 3.2.1 [Keys for Distribution String], page 31, and
Section 3.4.1 [Keys for Method String], page 36, for further details.

3.2 Distribution String

The distr block must be the very first block and is obligatory. For that reason the keyword
distr is optional and can be omitted (together with the = character). Moreover it is ignored
while parsing the string. However, to avoid some possible confusion it has to start with the
letter d (if it is given at all).

The value of the distr key is used to get the distribution object, either via a unur_distr_
<value> call for a standard distribution via a unur_distr_<value>_new call to get an object
of a generic distribution. However not all generic distributions are supported yet.

The parameters for the standard distribution are given as a list. There must not be any
character (other than white space) between the name of the standard distribution and the
opening parenthesis (of this list. E.g., to get a beta distribution, use

distr = beta(2,4)

To get an object for a discrete distribution with probability vector (0.5,0.2,0.3), use
distr = discr; pv = (0.5,0.2,0.3)

It is also possible to set a PDF, PMF, or CDF using a string. E.g., to create a continuous
distribution with PDF proportional to exp(-sqrt(2+(x-1)^2) + (x-1)) and domain (0,inf) use

distr = cont; pdf = "exp(-sqrt(2+(x-1)^2) + (x-1))"

(Notice: If this string is used in an unur_str2distr or unur_str2gen call the double quotes
" must be protected by \".)

For the details of function strings see Section 3.3 [Function String], page 33.

3.2.1 Keys for Distribution String

List of standard distributions see Chapter 7 [Standard distributions], page 121
− [distr =] beta(...) ⇒ see Section 7.1.1 [beta], page 122
− [distr =] binomial(...) ⇒ see Section 7.3.1 [binomial], page 129
− [distr =] cauchy(...) ⇒ see Section 7.1.2 [cauchy], page 122
− [distr =] chi(...) ⇒ see Section 7.1.3 [chi], page 123
− [distr =] chisquare(...) ⇒ see Section 7.1.4 [chisquare], page 123
− [distr =] exponential(...) ⇒ see Section 7.1.5 [exponential], page 123
− [distr =] extremeI(...) ⇒ see Section 7.1.6 [extremeI], page 123
− [distr =] extremeII(...) ⇒ see Section 7.1.7 [extremeII], page 124
− [distr =] gamma(...) ⇒ see Section 7.1.8 [gamma], page 124
− [distr =] geometric(...) ⇒ see Section 7.3.2 [geometric], page 129
− [distr =] hypergeometric(...) ⇒ see Section 7.3.3 [hypergeometric], page 129
− [distr =] laplace(...) ⇒ see Section 7.1.9 [laplace], page 125
− [distr =] logarithmic(...) ⇒ see Section 7.3.4 [logarithmic], page 130
− [distr =] logistic(...) ⇒ see Section 7.1.10 [logistic], page 125
− [distr =] lomax(...) ⇒ see Section 7.1.11 [lomax], page 125
− [distr =] negativebinomial(...) ⇒ see Section 7.3.5 [negativebinomial], page 130
− [distr =] normal(...) ⇒ see Section 7.1.12 [normal], page 126

32 UNURAN User Manual

− [distr =] pareto(...) ⇒ see Section 7.1.13 [pareto], page 126

− [distr =] poisson(...) ⇒ see Section 7.3.6 [poisson], page 130

− [distr =] powerexponential(...) ⇒ see Section 7.1.14 [powerexponential], page 126

− [distr =] rayleigh(...) ⇒ see Section 7.1.15 [rayleigh], page 127

− [distr =] student(...) ⇒ see Section 7.1.16 [student], page 127

− [distr =] triangular(...) ⇒ see Section 7.1.17 [triangular], page 127

− [distr =] uniform(...) ⇒ see Section 7.1.18 [uniform], page 127

− [distr =] weibull(...) ⇒ see Section 7.1.19 [weibull], page 128

List of generic distributions see Chapter 4 [Handling Distribution Objects], page 43

− [distr =] cemp ⇒ see Section 4.4 [CEMP], page 51

− [distr =] cont ⇒ see Section 4.2 [CONT], page 44

− [distr =] discr ⇒ see Section 4.8 [DISCR], page 58

Notice: Order statistics for continuous distributions (see Section 4.3 [CORDER], page 49)
are supported by using the key orderstatistics for distributions of type CONT.

List of keys that are available via the String API. For description see the corresponding
UNURAN set calls.

• All distribution types

name = "<string>"
⇒ see [unur_distr_set_name], page 43

• cemp (Distribution Type) (see Section 4.4 [CEMP], page 51)

data = (<list>) [, <int>]
⇒ see [unur_distr_cemp_set_data], page 51

• cont (Distribution Type) (see Section 4.2 [CONT], page 44)

cdf = "<string>"
⇒ see [unur_distr_cont_set_cdfstr], page 46

domain = <double>, <double> | (<list>)
⇒ see [unur_distr_cont_set_domain], page 46

hr = "<string>"
⇒ see [unur_distr_cont_set_hrstr], page 48

mode = <double>
⇒ see [unur_distr_cont_set_mode], page 48

pdf = "<string>"
⇒ see [unur_distr_cont_set_pdfstr], page 46

pdfarea = <double>
⇒ see [unur_distr_cont_set_pdfarea], page 48

pdfparams = (<list>) [, <int>]
⇒ see [unur_distr_cont_set_pdfparams], page 46

Chapter 3: String Interface 33

orderstatistics = <int>, <int> | (<list>)
Make order statistics for given distribution. The first parameter gives the sam-
ple size, the second parameter its rank. (see see [unur_distr_corder_new],
page 49)

• discr (Distribution Type) (see Section 4.8 [DISCR], page 58)

cdf = "<string>"
⇒ see [unur_distr_discr_set_cdfstr], page 59

domain = <int>, <int> | (<list>)
⇒ see [unur_distr_discr_set_domain], page 60

mode [= <int>]
⇒ see [unur_distr_discr_set_mode], page 60

pmf = "<string>"
⇒ see [unur_distr_discr_set_pmfstr], page 59

pmfparams = (<list>) [, <int>]
⇒ see [unur_distr_discr_set_pmfparams], page 60

pmfsum = <double>
⇒ see [unur_distr_discr_set_pmfsum], page 61

pv = (<list>) [, <int>]
⇒ see [unur_distr_discr_set_pv], page 58

3.3 Function String

In unuran it is also possible to define functions (e.g. CDF or PDF) as strings. As you can
see in Example 2 (Section 2.6 [Example 2 str], page 17) it is very easy to define the PDF of a
distribution object by means of a string. The possibilities using this string interface are more
restricted than using a pointer to a routine coded in C (Section 2.5 [Example 2], page 15). But
the differences in evaluation time is small. When a distribution object is defined using this string
interface then of course the same conditions on the given density or CDF must be satisfied for
a chosen method as for the standard API. This string interface can be used for both within the
UNURAN string API using the unur_str2gen call, and for calls that define the density or CDF
for a particular distribution object as done with (e.g.) the call unur_distr_cont_set_pdfstr.
Here is an example for the latter case:

unur_distr_cont_set_pdfstr(distr,"1-x*x");

Syntax

The syntax for the function string is case insensitive, white spaces are ingnored. The ex-
pressions are similar to most programming languages and mathematical programs (see also the
examples below). It is especially influenced by C. The usual preceedence rules are used (from
highest to lowest preceedence: functions, power, multiplication, addition, relation operators).
Use parentheses in case of doubt or when these preceedences should be changed.

Relation operators can be used as indicator functions, i.e. the term (x>1) is evaluted as 1 if
this relation is satisfied, and as 0 otherwise.

The first unknown symbol (letter or word) is interpreted as the variable of the function. It
is recommended to use x. Only one variable can be used.

34 UNURAN User Manual

Important : The symbol e is used twice, for Euler’s constant (= 2.7182. . .) and as exponent.
The multiplication operator * must not be omitted, i.e. 2 x is interpreted as the string 2x (which
will result in a syntax error).

List of symbols

� �
Numbers

Numbers are composed using digits and, optionally, a sign, a decimal point, and an exponent
indicated by e.

Symbol Explanation Examples
0...9 digits 2343
. decimal point 165.567
- negative sign -465.223
e exponet 13.2e-4 (=0.00132)
 	

� �
Constants

pi pi = 3.1415. . . 3*pi+2
e Euler’s constant 3*e+2 (= 10.15. . . ; do not cofuse with

3e2 = 300)
inf infinity (used for domains)
 	

� �
Special symbols

(opening parenthesis 2*(3+x)
) closing parenthesis 2*(3+x)
, (argument) list separator mod(13,2)
 	

� �
Relation operators (Indicator functions)

< less than (x<1)
= equal (2=x)
== same as = (x==3)
> greater than (x>0)
<= less than or equal (x<=1)
!= not equal (x!0)
<> same as != (x<>pi)
>= greater or equal (x>=1)
 	

Chapter 3: String Interface 35� �
Arithmetic operators

+ addition 2+x
- subtraction 2-x
* multiplication 2*x
/ division x/2
^ power x^2
 	

� �
Functions

mod mod(m,n) remainder of devi-
sion m over n

mod(x,2)

exp exponential function (same as
e^x)

exp(-x^2) (same as e^(-x^2))

log natural logarithm log(x)
sin sine sin(x)
cos cosine cos(x)
tan tangent tan(x)
sec secant sec(x*2)
sqrt square root sqrt(2*x)
abs absolute value abs(x)
sgn sign function sign(x)*3
 	

� �
Variable

x variable 3*x^2
 	
Examples

1.231+7.9876*x-1.234e-3*x^2+3.335e-5*x^3

sin(2*pi*x)+x^2

exp(-((x-3)/2.1)^2)

It is also possible to define functions using different terms on separate domains. However, instead
of constructs using if ... then ... else ... indicator functions are available.
For example to define the density of triangular distribution with domain (-1,1) and mode 0 use

(x>-1)*(x<0)*(1+x) + (x>=0)*(x<1)*(1-x)

3.4 Method String

The key method is obligatory, it must be the first key and its value is the name of a method
suitable for the choosen standard distribution. E.g., if method AROU is chosen, use

method = arou

Of course the all following keys dependend on the method choosen at first. All corresponding
set calls of UNURAN are available and the key is the string after the unur_<methodname>_set_

36 UNURAN User Manual

part of the command. E.g., UNURAN provides the command unur_arou_set_max_sqhratio
to set a parameter of method AROU. To call this function via the string-interface, the key
max_sqhratio can be used:

max_sqhratio = 0.9

Additionally the keyword debug can be used to set debugging flags (see Chapter 9 [Debug-
ging], page 137, for details).

If this block is omitted, a suitable default method is used. Notice however that the default
method may change in future versions of UNURAN.

3.4.1 Keys for Method String

List of methods and keys that are available via the String API. For description see the
corresponding UNURAN set calls.
• method = arou ⇒ unur_arou_new (see Section 5.3.1 [AROU], page 67)

center = <double>
⇒ see [unur_arou_set_center], page 69

cpoints = <int> [, (<list>)] | (<list>)
⇒ see [unur_arou_set_cpoints], page 69

darsfactor = <double>
⇒ see [unur_arou_set_darsfactor], page 68

guidefactor = <double>
⇒ see [unur_arou_set_guidefactor], page 69

max_segments [= <int>]
⇒ see [unur_arou_set_max_segments], page 69

max_sqhratio = <double>
⇒ see [unur_arou_set_max_sqhratio], page 68

pedantic [= <int>]
⇒ see [unur_arou_set_pedantic], page 69

usecenter [= <int>]
⇒ see [unur_arou_set_usecenter], page 69

usedars [= <int>]
⇒ see [unur_arou_set_usedars], page 68

verify [= <int>]
⇒ see [unur_arou_set_verify], page 69

• method = auto ⇒ unur_auto_new (see Section 5.2 [AUTO], page 64)

logss [= <int>]
⇒ see [unur_auto_set_logss], page 64

• method = cstd ⇒ unur_cstd_new (see Section 5.3.2 [CSTD], page 70)

variant = <unsigned>
⇒ see [unur_cstd_set_variant], page 70

• method = dari ⇒ unur_dari_new (see Section 5.7.1 [DARI], page 108)

cpfactor = <double>
⇒ see [unur_dari_set_cpfactor], page 109

Chapter 3: String Interface 37

squeeze [= <int>]
⇒ see [unur_dari_set_squeeze], page 109

tablesize [= <int>]
⇒ see [unur_dari_set_tablesize], page 109

verify [= <int>]
⇒ see [unur_dari_set_verify], page 109

• method = dau ⇒ unur_dau_new (see Section 5.7.2 [DAU], page 110)

urnfactor = <double>
⇒ see [unur_dau_set_urnfactor], page 111

• method = dgt ⇒ unur_dgt_new (see Section 5.7.3 [DGT], page 111)

guidefactor = <double>
⇒ see [unur_dgt_set_guidefactor], page 112

variant = <unsigned>
⇒ see [unur_dgt_set_variant], page 112

• method = dsrou ⇒ unur_dsrou_new (see Section 5.7.4 [DSROU], page 112)

cdfatmode = <double>
⇒ see [unur_dsrou_set_cdfatmode], page 113

verify [= <int>]
⇒ see [unur_dsrou_set_verify], page 113

• method = dstd ⇒ unur_dstd_new (see Section 5.7.6 [DSTD], page 114)

variant = <unsigned>
⇒ see [unur_dstd_set_variant], page 115

• method = empk ⇒ unur_empk_new (see Section 5.4.1 [EMPK], page 98)

beta = <double>
⇒ see [unur_empk_set_beta], page 100

kernel = <unsigned>
⇒ see [unur_empk_set_kernel], page 99

positive [= <int>]
⇒ see [unur_empk_set_positive], page 100

smoothing = <double>
⇒ see [unur_empk_set_smoothing], page 100

varcor [= <int>]
⇒ see [unur_empk_set_varcor], page 100

• method = hinv ⇒ unur_hinv_new (see Section 5.3.3 [HINV], page 71)

boundary = <double>, <double> | (<list>)
⇒ see [unur_hinv_set_boundary], page 73

cpoints = (<list>), <int>
⇒ see [unur_hinv_set_cpoints], page 72

38 UNURAN User Manual

guidefactor = <double>
⇒ see [unur_hinv_set_guidefactor], page 73

max_intervals [= <int>]
⇒ see [unur_hinv_set_max_intervals], page 73

order [= <int>]
⇒ see [unur_hinv_set_order], page 72

u_resolution = <double>
⇒ see [unur_hinv_set_u_resolution], page 72

• method = hrb ⇒ unur_hrb_new (see Section 5.3.4 [HRB], page 74)

upperbound = <double>
⇒ see [unur_hrb_set_upperbound], page 74

verify [= <int>]
⇒ see [unur_hrb_set_verify], page 74

• method = hrd ⇒ unur_hrd_new (see Section 5.3.5 [HRD], page 74)

verify [= <int>]
⇒ see [unur_hrd_set_verify], page 75

• method = hri ⇒ unur_hri_new (see Section 5.3.6 [HRI], page 75)

p0 = <double>
⇒ see [unur_hri_set_p0], page 75

verify [= <int>]
⇒ see [unur_hri_set_verify], page 76

• method = ninv ⇒ unur_ninv_new (see Section 5.3.7 [NINV], page 76)

max_iter [= <int>]
⇒ see [unur_ninv_set_max_iter], page 77

start = <double>, <double> | (<list>)
⇒ see [unur_ninv_set_start], page 77

table [= <int>]
⇒ see [unur_ninv_set_table], page 77

usenewton
⇒ see [unur_ninv_set_usenewton], page 77

useregula
⇒ see [unur_ninv_set_useregula], page 76

x_resolution = <double>
⇒ see [unur_ninv_set_x_resolution], page 77

• method = nrou ⇒ unur_nrou_new (see Section 5.3.8 [NROU], page 78)

center = <double>
⇒ see [unur_nrou_set_center], page 79

u = <double>, <double> | (<list>)
⇒ see [unur_nrou_set_u], page 79

Chapter 3: String Interface 39

v = <double>
⇒ see [unur_nrou_set_v], page 79

verify [= <int>]
⇒ see [unur_nrou_set_verify], page 79

• method = srou ⇒ unur_srou_new (see Section 5.3.9 [SROU], page 80)

cdfatmode = <double>
⇒ see [unur_srou_set_cdfatmode], page 81

pdfatmode = <double>
⇒ see [unur_srou_set_pdfatmode], page 81

r = <double>
⇒ see [unur_srou_set_r], page 81

usemirror [= <int>]
⇒ see [unur_srou_set_usemirror], page 82

usesqueeze [= <int>]
⇒ see [unur_srou_set_usesqueeze], page 81

verify [= <int>]
⇒ see [unur_srou_set_verify], page 82

• method = ssr ⇒ unur_ssr_new (see Section 5.3.10 [SSR], page 83)

cdfatmode = <double>
⇒ see [unur_ssr_set_cdfatmode], page 84

pdfatmode = <double>
⇒ see [unur_ssr_set_pdfatmode], page 84

usesqueeze [= <int>]
⇒ see [unur_ssr_set_usesqueeze], page 84

verify [= <int>]
⇒ see [unur_ssr_set_verify], page 84

• method = tabl ⇒ unur_tabl_new (see Section 5.3.11 [TABL], page 85)

areafraction = <double>
⇒ see [unur_tabl_set_areafraction], page 88

boundary = <double>, <double> | (<list>)
⇒ see [unur_tabl_set_boundary], page 88

darsfactor = <double>
⇒ see [unur_tabl_set_darsfactor], page 87

guidefactor = <double>
⇒ see [unur_tabl_set_guidefactor], page 88

max_intervals [= <int>]
⇒ see [unur_tabl_set_max_intervals], page 88

max_sqhratio = <double>
⇒ see [unur_tabl_set_max_sqhratio], page 87

nstp [= <int>]
⇒ see [unur_tabl_set_nstp], page 88

40 UNURAN User Manual

slopes = (<list>), <int>
⇒ see [unur_tabl_set_slopes], page 88

usedars [= <int>]
⇒ see [unur_tabl_set_usedars], page 87

variant_splitmode = <unsigned>
⇒ see [unur_tabl_set_variant_splitmode], page 87

verify [= <int>]
⇒ see [unur_tabl_set_verify], page 89

• method = tdr ⇒ unur_tdr_new (see Section 5.3.12 [TDR], page 89)

c = <double>
⇒ see [unur_tdr_set_c], page 90

center = <double>
⇒ see [unur_tdr_set_center], page 92

cpoints = <int> [, (<list>)] | (<list>)
⇒ see [unur_tdr_set_cpoints], page 92

darsfactor = <double>
⇒ see [unur_tdr_set_darsfactor], page 91

guidefactor = <double>
⇒ see [unur_tdr_set_guidefactor], page 92

max_intervals [= <int>]
⇒ see [unur_tdr_set_max_intervals], page 92

max_sqhratio = <double>
⇒ see [unur_tdr_set_max_sqhratio], page 91

pedantic [= <int>]
⇒ see [unur_tdr_set_pedantic], page 93

usecenter [= <int>]
⇒ see [unur_tdr_set_usecenter], page 92

usedars [= <int>]
⇒ see [unur_tdr_set_usedars], page 90

usemode [= <int>]
⇒ see [unur_tdr_set_usemode], page 92

variant_gw
⇒ see [unur_tdr_set_variant_gw], page 90

variant_ia
⇒ see [unur_tdr_set_variant_ia], page 90

variant_ps
⇒ see [unur_tdr_set_variant_ps], page 90

verify [= <int>]
⇒ see [unur_tdr_set_verify], page 92

• method = utdr ⇒ unur_utdr_new (see Section 5.3.13 [UTDR], page 93)

cpfactor = <double>
⇒ see [unur_utdr_set_cpfactor], page 94

Chapter 3: String Interface 41

deltafactor = <double>
⇒ see [unur_utdr_set_deltafactor], page 94

pdfatmode = <double>
⇒ see [unur_utdr_set_pdfatmode], page 94

verify [= <int>]
⇒ see [unur_utdr_set_verify], page 94

• method = vempk ⇒ unur_vempk_new (see Section 5.6.1 [VEMPK], page 105)

smoothing = <double>
⇒ see [unur_vempk_set_smoothing], page 105

varcor [= <int>]
⇒ see [unur_vempk_set_varcor], page 106

• method = vnrou ⇒ unur_vnrou_new (see Section 5.5.2 [VNROU], page 101)

r = <double>
⇒ see [unur_vnrou_set_r], page 103

v = <double>
⇒ see [unur_vnrou_set_v], page 103

verify [= <int>]
⇒ see [unur_vnrou_set_verify], page 103

3.5 Uniform RNG String

The value of the urng key is passed to the PRNG interface (see PRNG manual for details).
However it only works when using the PRNG library is enabled, see Section 1.2 [Installation],
page 3 for details. There are no other keys.

IMPORTANT: UNURAN creates a new uniform random number generator for the generator
object. The pointer to this uniform generator has to be read and saved via a unur_get_urng
call in order to clear the memory before the UNURAN generator object is destroyed.

If this block is omitted the UNURAN default generator is used (which must not be destroyed).

http://statistik.wu-wien.ac.at/prng/manual/

42 UNURAN User Manual

Chapter 4: Handling distribution objects 43

4 Handling distribution objects

Objects of type UNUR_DISTR are used for handling distributions. All data about a distribution
are stored in this object. UNURAN provides functions that return such objects for standard
distributions (see Chapter 7 [Standard distributions], page 121). It is then possible to change
this distribution object by various set calls. Moreover it is possible to build a distribution object
entirely from scratch. For this purpose there exists an unur_distr_<type>_new call that returns
an empty object of this type for each object type (eg. univariate contiuous) which can be filled
with the appropriate set calls.

Notice that there are essential data about a distribution, eg. the PDF, a list of (shape,
scale, location) parameters for the distribution, and the domain of (the possibly truncated)
distribution. And there exist parameters that are/can be derived from these, eg. the mode
of the distribution or the area below the given PDF (which need not be normalized for many
methods). UNURAN keeps track of parameters which are known. Thus if one of the essential
parameters is changed all derived parameters are marked as unknown and must be set again if
these are required for the chosen generation method.

The library can handle truncated distributions, that is, distribution that are derived from
(standard) distribution by simply restricting its domain to a subset. However there is a subtle
difference between changing the domain of a distribution object by a unur_distr_cont_set_
domain call and changing the (truncated) domain for an existing generator object. The domain
of the distribution object is used to create the generator object with hats, squeezes, tables,
etc. Whereas truncating the domain of an existing generator object need not necessarily require
a recomputation of these data. Thus by a unur_<method>_chg_truncated call (if available)
the sampling region is restricted to the subset of the domain of the given distribution object.
However generation methods that require a recreation of the generator object when the domain
is changed have a unur_<method>_chg_domain call instead. For this call there are of course no
restrictions on the given domain (i.e., it is possible to increase the domain of the distribution)
(see Chapter 5 [Methods], page 63, for details).

For the objects provided by the UNURAN library of standard distributions, calls for updating
these parameters exist (one for each parameter to avoid computational overhead since not all
parameters are required for all generator methods).

The calls listed below only handle distribution object. Since every generator object has its
own copy of a distribution object, there are calls for a chosen method that change this copy
of distribution object. NEVER extract the distribution object out of the generator object and
run one of the below set calls on it. (How should the poor generator object know what has
happend?)

4.1 Functions for all kinds of distribution objects

Function reference

[–]void unur distr free (UNUR_DISTR* distribution)
Destroy a distribution object.

[–]int unur distr set name (UNUR_DISTR* distribution, const char* name)
[–]const char* unur distr get name (const UNUR_DISTR* distribution)

Set and get name of distribution.

44 UNURAN User Manual

[–]int unur distr get dim (const UNUR_DISTR* distribution)
Get number of components of random vector (its dimension).
For univariate distributions it returns dimension 1.
For matrix distributions it returns the number of components. When the respective numbers
of rows and columns are needed use unur_distr_matr_get_dim instead.

[–]unsigned int unur distr get type (const UNUR_DISTR* distribution)
Get type of distribution. Possible types are

UNUR_DISTR_CONT
univariate continuous distributions

UNUR_DISTR_CEMP
empirical continuous univariate distributions (i.e. samples)

UNUR_DISTR_CVEC
continuous mulitvariate distributions

UNUR_DISTR_CVEMP
empirical continuous multivariate distributions (i.e. samples)

UNUR_DISTR_DISCR
discrete univariate distributions

UNUR_DISTR_MATR
matrix distributions

Alternatively the unur_distr_is_<TYPE> calls can be used.

[–]int unur distr is cont (const UNUR_DISTR* distribution)
TRUE if distribution is a continuous univariate distribution.

[–]int unur distr is cvec (const UNUR_DISTR* distribution)
TRUE if distribution is a continuous multivariate distribution.

[–]int unur distr is cemp (const UNUR_DISTR* distribution)
TRUE if distribution is an empirical continuous univariate distribution, i.e. a sample.

[–]int unur distr is cvemp (const UNUR_DISTR* distribution)
TRUE if distribution is an empirical continuous multivariate distribution.

[–]int unur distr is discr (const UNUR_DISTR* distribution)
TRUE if distribution is a discrete univariate distribution.

[–]int unur distr is matr (const UNUR_DISTR* distribution)
TRUE if distribution is a matrix distribution.

4.2 Continuous univariate distributions

Function reference

[–]UNUR_DISTR* unur distr cont new (void)
Create a new (empty) object for univariate continuous distribution.

Chapter 4: Handling distribution objects 45

Essential parameters

[–]int unur distr cont set pdf (UNUR_DISTR* distribution, UNUR_FUNCT_CONT*
pdf)

[–]int unur distr cont set dpdf (UNUR_DISTR* distribution, UNUR_FUNCT_CONT*
dpdf)

[–]int unur distr cont set cdf (UNUR_DISTR* distribution, UNUR_FUNCT_CONT*
cdf)

Set respective pointer to the probability density function (PDF), the derivative of the proba-
bility density function (dPDF) and the cumulative distribution function (CDF) of the distri-
bution. The type of each of these functions must be of type double funct(double x, const
UNUR_DISTR *distr).

Due to the fact that some of the methods do not require a normalized PDF the following is
important:

− The given CDF must be the cumulative distribution function of the (non-truncated)
distribution. If a distribution from the UNURAN library of standard distributions (see
Chapter 7 [Standard distributions], page 121) is truncated, there is no need to change
the CDF.

− If both the CDF and the PDF are used (for a method or for order statistics), the PDF
must be the derivative of the CDF. If a truncated distribution for one of the standard
distributions from the UNURAN library of standard distributions is used, there is no
need to change the PDF.

− If the area below the PDF is required for a given distribution it must be given by
the unur_distr_cont_set_pdfarea call. For a truncated distribution this must be of
course the integral of the PDF in the given truncated domain. For distributions from
the UNURAN library of standard distributions this is done automatically by the unur_
distr_cont_upd_pdfarea call.

It is important to note that all these functions must return a result for all floats x. Eg., if the
domain of a given PDF is the interval [-1,1], then the given function must return 0.0 for all
points outside this interval. In case of an overflow the PDF should return UNUR_INFINITY.

It is not possible to change such a function. Once the PDF or CDF is set it cannot be
overwritten. This also holds when the PDF is given by the unur_distr_cont_set_pdfstr
call. A new distribution object has to be used instead.

[–]UNUR_FUNCT_CONT* unur distr cont get pdf (const UNUR_DISTR*

distribution)
[–]UNUR_FUNCT_CONT* unur distr cont get dpdf (const UNUR_DISTR*

distribution)
[–]UNUR_FUNCT_CONT* unur distr cont get cdf (const UNUR_DISTR*

distribution)
Get the respective pointer to the PDF, the derivative of the PDF and the CDF of the
distribution. The pointer is of type double funct(double x, const UNUR_DISTR *distr).
If the corresponding function is not available for the distribution, the NULL pointer is returned.

[–]double unur distr cont eval pdf (double x, const UNUR_DISTR*

distribution)
[–]double unur distr cont eval dpdf (double x, const UNUR_DISTR*

distribution)

46 UNURAN User Manual

[–]double unur distr cont eval cdf (double x, const UNUR_DISTR*

distribution)
Evaluate the PDF, derivative of the PDF and the CDF, respectively, at x. Notice that
distribution must not be the NULL pointer. If the corresponding function is not available for
the distribution, UNUR_INFINITY is returned and unur_errno is set to UNUR_ERR_DISTR_DATA.

IMPORTANT: In the case of a truncated standard distribution these calls always return the
respective values of the untruncated distribution!

[–]int unur distr cont set pdfstr (UNUR_DISTR* distribution, const char*

pdfstr)
This function provides an alternative way to set a PDF and its derivative of the distribution.
pdfstr is a character string that contains the formula for the PDF, see Section 3.3 [Function
String], page 33, for details. See also the remarks for the unur_distr_cont_set_pdf call.

It is not possible to call this funtion twice or to call this function after a unur_distr_cont_
set_pdf call.

[–]int unur distr cont set cdfstr (UNUR_DISTR* distribution, const char*

cdfstr)
This function provides an alternative way to set a CDF; analogously to the unur_distr_
cont_set_pdfstr call.

[–]char* unur distr cont get pdfstr (const UNUR_DISTR* distribution)
[–]char* unur distr cont get dpdfstr (const UNUR_DISTR* distribution)
[–]char* unur distr cont get cdfstr (const UNUR_DISTR* distribution)

Get pointer to respective string for PDF, derivate of PDF, and CDF of distribution that is
given via the string interface. This call allocates memory to produce this string. It should
be freed when it is not used any more.

[–]int unur distr cont set pdfparams (UNUR_DISTR* distribution, const
double* params, int n_params)

Set array of parameters for distribution. There is an upper limit for the number of parameters
n_params. It is given by the macro UNUR_DISTR_MAXPARAMS in ‘unuran_config.h’. (It is set
to 5 by default but can be changed to any appropriate nonnegative number.) If n params
is negative or exceeds this limit no parameters are copied into the distribution object and
unur_errno is set to UNUR_ERR_DISTR_NPARAMS.

For standard distributions from the UNURAN library the parameters are checked. Moreover
the domain is updated automatically unless it has been changed before by a unur_distr_
cont_set_domain call. It these parameters are invalid, then no parameters are set and an
error code is returned. Notice that optional parameters are (re-)set to their default values if
not given for UNURAN standard distributions.

[–]int unur distr cont get pdfparams (const UNUR_DISTR* distribution,
const double** params)

Get number of parameters of the PDF and set pointer params to array of parameters. If no
parameters are stored in the object, 0 is returned and params is set to NULL.

Important: Do not change the entries in params!

Chapter 4: Handling distribution objects 47

[–]int unur distr cont set domain (UNUR_DISTR* distribution, double left,
double right)

Set the left and right borders of the domain of the distribution. This can also be used to
truncate an existing distribution. For setting the boundary to +/- infinity use +/- UNUR_
INFINITY. If right is not strictly greater than left no domain is set and unur_errno is set to
UNUR_ERR_DISTR_SET.
Important: For some technical reasons it is assumed that the density is unimodal and thus
monotone on either side of the mode! This is used in the case when the given moden is
outside of the original domain. Then the mode is set to the corresponding boundary of the
new domain.

[–]int unur distr cont get domain (const UNUR_DISTR* distribution, double*
left, double* right)

Get the left and right borders of the domain of the distribution. If the domain is not set
explicitly +/- UNUR_INFINITY is assumed and returned. No error is reported in this case.

[–]int unur distr cont get truncated (const UNUR_DISTR* distribution,
double* left, double* right)

Get the left and right borders of the (truncated) domain of the distribution. For non-
truncated distribution this call is equivalent to the unur_distr_cont_get_domain call. If
the (truncated) domain is not set explicitly +/- UNUR_INFINITY is assumed and returned.
No error is reported in this case.
This call is only useful in connection with a unur_get_distr call to get the boundaries of
the sampling region of a generator object.

[–]int unur distr cont set hr (UNUR_DISTR* distribution, UNUR_FUNCT_CONT*
hazard)

Set pointer to the hazard rate (HR) of the distribution.
The hazard rate (or failure rate) is a mathematical way of describing aging. If the lifetime
X is a random variable with density f(x) and CDF F(x) the hazard rate h(x) is defined as
h(x) = f(x) / (1-F(x)). In other words, h(x) represents the (conditional) rate of failure of
a unit that has survived up to time x with probability 1-F(x). The key distribution is the
exponential distribution as it has constant hazard rate of value 1. Hazard rates tending to
infinity describe distributions with sub-exponential tails whereas distributions with hazard
rates tending to zero have heavier tails than the exponential distribution.
It is important to note that all these functions must return a result for all floats x. In case
of an overflow the PDF should return UNUR_INFINITY.
Important: Do not simply use f(x) / (1-F(x)), since this is numerically very unstable and
results in numerical noise if F(x) is (very) close to 1. Moreover, if the density f(x) is known
a generation method that uses the density is more appropriate.
It is not possible to change such a function. Once the HR is set it cannot be overwritten.
This also holds when the HR is given by the unur_distr_cont_set_hrstr call. A new
distribution object has to be used instead.

[–]UNUR_FUNCT_CONT* unur distr cont get hr (const UNUR_DISTR*

distribution)
Get the pointer to the hazard rate of the distribution. The pointer is of type double
funct(double x, const UNUR_DISTR *distr). If the corresponding function is not avail-
able for the distribution, the NULL pointer is returned.

48 UNURAN User Manual

[–]double unur distr cont eval hr (double x, const UNUR_DISTR* distribution)
Evaluate the hazard rate at x. Notice that distribution must not be the NULL pointer. If the
corresponding function is not available for the distribution, UNUR_INFINITY is returned and
unur_errno is set to UNUR_ERR_DISTR_DATA.

[–]int unur distr cont set hrstr (UNUR_DISTR* distribution, const char*

hrstr)
This function provides an alternative way to set a hazard rate and its derivative of the
distribution. hrstr is a character string that contains the formula for the HR, see Section 3.3
[Function String], page 33, for details. See also the remarks for the unur_distr_cont_set_hr
call.
It is not possible to call this funtion twice or to call this function after a unur_distr_cont_
set_hr call.

[–]char* unur distr cont get hrstr (const UNUR_DISTR* distribution)
Get pointer to string for HR of distribution that is given via the string interface. This call
allocates memory to produce this string. It should be freed when it is not used any more.

Derived parameters

The following paramters must be set whenever one of the essential parameters has been set
or changed (and the parameter is required for the chosen method).

[–]int unur distr cont set mode (UNUR_DISTR* distribution, double mode)
Set mode of distribution.

[–]int unur distr cont upd mode (UNUR_DISTR* distribution)
Recompute the mode of the distribution. This call works properly for distribution objects
from the UNURAN library of standard distributions when the corresponding function is
available. Otherwise a (slow) numerical mode finder is used. If it failes unur_errno is set to
UNUR_ERR_DISTR_DATA.

[–]double unur distr cont get mode (UNUR_DISTR* distribution)
Get mode of distribution. If the mode is not marked as known, unur_distr_cont_upd_
mode is called to compute the mode. If this is not successful UNUR_INFINITY is returned and
unur_errno is set to UNUR_ERR_DISTR_GET. (There is no difference between the case where
no routine for computing the mode is available and the case where no mode exists for the
distribution at all.)

[–]int unur distr cont set pdfarea (UNUR_DISTR* distribution, double area)
Set the area below the PDF. If area is non-positive, no area is set and unur_errno is set to
UNUR_ERR_DISTR_SET.
For a distribution object created by the UNURAN library of standard distributions you
always should use the unur_distr_cont_upd_pdfarea. Otherwise there might be ambiguous
side-effects.

[–]int unur distr cont upd pdfarea (UNUR_DISTR* distribution)
Recompute the area below the PDF of the distribution. It only works for distribution objects
from the UNURAN library of standard distributions when the corresponding function is
available. Otherwise unur_errno is set to UNUR_ERR_DISTR_DATA.

Chapter 4: Handling distribution objects 49

This call sets the normalization constant such that the given PDF is the derivative of a given
CDF, i.e. the area is 1. However for truncated distributions the area is smaller than 1.
The call does not work for distributions from the UNURAN library of standard distributions
with truncated domain when the CDF is not available.

[–]double unur distr cont get pdfarea (UNUR_DISTR* distribution)
Get the area below the PDF of the distribution. If this area is not known,
unur_distr_cont_upd_pdfarea is called to compute it. If this is not successful UNUR_
INFINITY is returned and unur_errno is set to UNUR_ERR_DISTR_GET.

4.3 Continuous univariate order statistics

Function reference

[–]UNUR_DISTR* unur distr corder new (const UNUR_DISTR* distribution, int
n, int k)

Create an object for order statistics of sample size n and rank k. distribution must be a
pointer to a univariate continuous distribution. The resulting generator object is of the
same type as of a unur_distr_cont_new call. (However it cannot be used to make an order
statistics out of an order statistics.)
To have a PDF for the order statistics, the given distribution object must contain a CDF
and a PDF. Moreover it is assumed that the given PDF is the derivative of the given CDF.
Otherwise the area below the PDF of the order statistics is not computed correctly.
Important: There is no warning when the computed area below the PDF of the order statistics
is wrong.

[–]const UNUR_DISTR* unur distr corder get distribution (const UNUR_DISTR*

distribution)
Get pointer to distribution object for underlying distribution.

Essential parameters

[–]int unur distr corder set rank (UNUR_DISTR* distribution, int n, int k)
Change sample size n and rank k of order statistics. In case of invalid data, no parameters
are changed and 0 is returned. The area below the PDF can be set to that of the underlying
distribution by a unur_distr_corder_upd_pdfarea call.

[–]int unur distr corder get rank (const UNUR_DISTR* distribution, int* n,
int* k)

Get sample size n and rank k of order statistics. In case of error an error code is returned.

Additionally most of the set and get calls for continuous univariate distributions work. The
most important exceptions are that the PDF and CDF cannot be changed and unur_distr_
cont_upd_mode uses in any way a (slow) numerical method that might fail.

[–]UNUR_FUNCT_CONT* unur distr corder get pdf (UNUR_DISTR* distribution)
[–]UNUR_FUNCT_CONT* unur distr corder get dpdf (UNUR_DISTR* distribution)
[–]UNUR_FUNCT_CONT* unur distr corder get cdf (UNUR_DISTR* distribution)

Get the respective pointer to the PDF, the derivative of the PDF and the CDF of the distribu-
tion, respectively. The pointer is of type double funct(double x, UNUR_DISTR *distr). If

50 UNURAN User Manual

the corresponding function is not available for the distribution, the NULL pointer is returned.
See also unur_distr_cont_get_pdf. (Macro)

[–]double unur distr corder eval pdf (double x, UNUR_DISTR* distribution)
[–]double unur distr corder eval dpdf (double x, UNUR_DISTR* distribution)
[–]double unur distr corder eval cdf (double x, UNUR_DISTR* distribution)

Evaluate the PDF, derivative of the PDF. and the CDF, respectively, at x. Notice that
distribution must not be the NULL pointer. If the corresponding function is not available for
the distribution, UNUR_INFINITY is returned and unur_errno is set to UNUR_ERR_DISTR_DATA.
See also unur_distr_cont_eval_pdf. (Macro)
IMPORTANT: In the case of a truncated standard distribution these calls always return the
respective values of the untruncated distribution!

[–]int unur distr corder set pdfparams (UNUR_DISTR* distribution, double*
params, int n_params)

Set array of parameters for underlying distribution. See unur_distr_cont_set_pdfparams
for details. (Macro)

[–]int unur distr corder get pdfparams (UNUR_DISTR* distribution, double**
params)

Get number of parameters of the PDF of the underlying distribution and set pointer params
to array of parameters. See unur_distr_cont_get_pdfparams for details. (Macro)

[–]int unur distr corder set domain (UNUR_DISTR* distribution, double left,
double right)

Set the left and right borders of the domain of the distribution. See unur_distr_cont_set_
domain for details. (Macro)

[–]int unur distr corder get domain (UNUR_DISTR* distribution, double*
left, double* right)

Get the left and right borders of the domain of the distribution. See unur_distr_cont_get_
domain for details. (Macro)

[–]int unur distr corder get truncated (UNUR_DISTR* distribution, double*
left, double* right)

Get the left and right borders of the (truncated) domain of the distribution. See unur_distr_
cont_get_truncated for details. (Macro)

Derived parameters

The following paramters must be set whenever one of the essential parameters has been set
or changed (and the parameter is required for the chosen method).

[–]int unur distr corder set mode (UNUR_DISTR* distribution, double mode)
Set mode of distribution. See also unur_distr_corder_set_mode. (Macro)

[–]double unur distr corder upd mode (UNUR_DISTR* distribution)
Recompute the mode of the distribution numerically. Notice that this routine is slow and
might not work properly in every case. See also unur_distr_cont_upd_mode for further
details. (Macro)

Chapter 4: Handling distribution objects 51

[–]double unur distr corder get mode (UNUR_DISTR* distribution)
Get mode of distribution. See unur_distr_cont_get_mode for details. (Macro)

[–]int unur distr corder set pdfarea (UNUR_DISTR* distribution, double
area)

Set the area below the PDF. See unur_distr_cont_set_pdfarea for details. (Macro)

[–]double unur distr corder upd pdfarea (UNUR_DISTR* distribution)
Recompute the area below the PDF of the distribution. It only works for order statistics
for distribution objects from the UNURAN library of standard distributions when the cor-
responding function is available. unur_distr_cont_upd_pdfarea assumes that the PDF of
the underlying distribution is normalized, i.e. it is the derivative of its CDF. Otherwise the
computed area is wrong and there is no warning about this failure. See unur_distr_cont_
upd_pdfarea for further details. (Macro)

[–]double unur distr corder get pdfarea (UNUR_DISTR* distribution)
Get the area below the PDF of the distribution. See unur_distr_cont_get_pdfarea for
details. (Macro)

4.4 Continuous empirical univariate distributions

Function reference

[–]UNUR_DISTR* unur distr cemp new (void)
Create a new (empty) object for empirical univariate continuous distribution.

Essential parameters

[–]int unur distr cemp set data (UNUR_DISTR* distribution, const double*

sample, int n_sample)
Set observed sample for empirical distribution.

[–]int unur distr cemp read data (UNUR_DISTR* distribution, const char*

filename)
Read data from file ‘filename’. It reads the first double number from each line. Lines that
do not start with +, -, ., or a digit are ignored. (Beware of lines starting with a blank!)

In case of an error (file cannot be opened, invalid string for double in line) no data are copied
into the distribution object and an error code is returned.

[–]int unur distr cemp get data (const UNUR_DISTR* distribution, const
double** sample)

Get number of samples and set pointer sample to array of observations. If no sample has
been given, 0 is returned and sample is set to NULL.

Important: Do not change the entries in sample!

52 UNURAN User Manual

4.5 Continuous multivariate distributions

The following calls handle multivariate distributions. However, the requirements of particular
generation methods is not as unique as for univariate distribution. Moreover, the area of random
vector generation is still under development. The below functions are a first attempt to handle
this situation.

Notice that some of the parameters when given carelessly might contradict to others. For ex-
ample: Some methods require the marginal distribution and some methods need a standardized
form of the marginal distributions, where the actual mean and variance is stored in the mean
vector and the covariance matrix, respectively.

We also have to mention that some methods might abuse some of the parameters. For
example, method VMT (see Section 5.5.1 [VMT], page 101) uses standard marginal distributions.
However, the marginal distribution of the generated vectors might be transformed. Please read
the discription of the choosen sampling method carfully.

Function reference

[–]UNUR_DISTR* unur distr cvec new (int dim)
Create a new (empty) object for multivariate continuous distribution. dim is the number
of components of the random vector (i.e. its dimension). It must be at least 2; otherwise
unur_distr_cont_new should be used to create an object for a univariate distribution.

Essential parameters

[–]int unur distr cvec set pdf (UNUR_DISTR* distribution, UNUR_FUNCT_CVEC*
pdf)

Set respective pointer to the PDF of the distribution. This function must be of type double
funct(const double *x, const UNUR_DISTR *distr), where x must be a pointer to a double
array of appropriate size (i.e. of the same size as given to the unur_distr_cvec_new call).
It is not necessary that the given PDF is normalized, i.e. the integral need not be 1. Nev-
ertheless the volume below the PDF can be provided by a unur_distr_cvec_set_pdfvol
call.

[–]int unur distr cvec set dpdf (UNUR_DISTR* distribution,
UNUR_VFUNCT_CVEC* dpdf)

Set pointer to the gradient of the PDF. The type of this function must be int funct(double
*result, const double *x, const UNUR_DISTR *distr), where result and x must be point-
ers to double arrays of appropriate size (i.e. of the same size as given to the unur_distr_
cvec_new call). The gradient of the PDF is stored in the array result. The function should
return an error code in case of an error and must return UNUR_SUCCESS otherwise.
The given function must be proved the gradient of the function given by a unur_distr_cvec_
set_pdf call.

[–]UNUR_FUNCT_CVEC* unur distr cvec get pdf (const UNUR_DISTR*

distribution)
Get the pointer to the PDF of the distribution. The pointer is of type double funct(const
double *x, const UNUR_DISTR *distr). If the corresponding function is not available for
the distribution, the NULL pointer is returned.

Chapter 4: Handling distribution objects 53

[–]UNUR_VFUNCT_CVEC* unur distr cvec get dpdf (const UNUR_DISTR*

distribution)
Get the pointer to the gradient of the PDF of the distribution. The pointer is of type
int double funct(double *result, const double *x, const UNUR_DISTR *distr). If the
corresponding function is not available for the distribution, the NULL pointer is returned.

[–]double unur distr cvec eval pdf (const double* x, const UNUR_DISTR*

distribution)
Evaluate the PDF of the distribution at x. x must be a pointers to a double arrays of
appropriate size (i.e. of the same size as given to the unur_distr_cvec_new call) that
contains the vector for which the function has to be evaluated.

Notice that distribution must not be the NULL pointer. If the corresponding function is not
available for the distribution, UNUR_INFINITY is returned and unur_errno is set to UNUR_
ERR_DISTR_DATA.

[–]int unur distr cvec eval dpdf (double* result, const double* x, const
UNUR_DISTR* distribution)

Evaluate the gradient of the PDF of the distribution at x. The result is stored in the double
array result. Both result and x must be pointer to double arrays of appropriate size (i.e. of
the same size as given to the unur_distr_cvec_new call).

Notice that distribution must not be the NULL pointer. If the corresponding function is not
available for the distribution, an error code is returned and unur_errno is set to UNUR_ERR_
DISTR_DATA (result is left unmodified).

[–]int unur distr cvec set mean (UNUR_DISTR* distribution, const double*

mean)
Set mean vector for multivariate distribution. mean must be a pointer to an array of size
dim, where dim is the dimension returned by unur_distr_get_dim. A NULL pointer for mean
is interpreted as the zero vector (0,. . . ,0).

[–]const double* unur distr cvec get mean (const UNUR_DISTR* distribution)

Get the mean vector of the distribution. The function returns a pointer to an array of size
dim. If the mean vector is not marked as known the NULL pointer is returned and unur_errno
is set to UNUR_ERR_DISTR_GET.

Important: Do not modify the array that holds the mean vector!

[–]int unur distr cvec set covar (UNUR_DISTR* distribution, const double*

covar)
Set covariance matrix for multivariate distribution. covar must be a pointer to an array of
size dim x dim, where dim is the dimension returned by unur_distr_get_dim. The rows of
the matrix have to be stored consecutively in this array.

covar must be a variance-covariance matrix of the distribution, i.e. it must be symmetric and
positive definite and its diagonal entries (i.e. the variance of the components of the random
vector) must be strictly positive. The Cholesky factor is computed (and stored) to verify the
positive definiteness condition.

A NULL pointer for covar is interpreted as the identity matrix.

Important: This entry is abused in some methods which do not require the covariance matrix.
It is then used to perform some transformation to obtain better performance.

54 UNURAN User Manual

Important: In case of an error (e.g. because covar is not a valid covariance matrix) an error
code is returned. Moreover, the covariance matrix is not set and is marked as unknown. A
previously set covariance matrix is then no longer available.
Remark: It might happen that a covariance matrix can be set but the inverse if the given
matrix cannot be computed.
Remark: UNU.RAN does not check whether the an eventually set covariance matrix and a
rank-correlation matrix do not contradict each other.

[–]const double* unur distr cvec get covar (const UNUR_DISTR* distribution)

[–]const double* unur distr cvec get cholesky (const UNUR_DISTR*

distribution)
[–]const double* unur distr cvec get covar inv (UNUR_DISTR* distribution)

Get covariance matrix of distribution, its Cholesky factor, and its inverse, respectively. The
function returns a pointer to an array of size dim x dim. The rows of the matrix are stored
consecutively in this array. If the requested matrix is not marked as known the NULL pointer
is returned and unur_errno is set to UNUR_ERR_DISTR_GET.
Important: Do not modify the array that holds the covariance matrix!
Remark: The inverse of the covariance matrix is computed if it is not already stored.

[–]int unur distr cvec set rankcorr (UNUR_DISTR* distribution, const double*

rankcorr)
Set rank-correlation matrix for multivariate distribution. rankcorr must be a pointer to an
array of size dim x dim, where dim is the dimension returned by unur_distr_get_dim. The
rows of the matrix have to be stored consecutively in this array.
rankcorr must be a rank-correlation matrix of the distribution, i.e. it must be symmetric and
positive definite and its diagonal entries must be equal to 1.
The Cholesky factor is computed (and but not stored) to verify the positive definiteness
condition.
A NULL pointer for rankcorr is interpreted as the identity matrix.
Important: In case of an error (e.g. because rankcorr is not a valid rank-correlation matrix)
an error code is returned. Moreover, the rank-correlation matrix is not set and is marked as
unknown. A previously set rank-correlation matrix is then no longer available.
Remark: UNU.RAN does not check whether the an eventually set covariance matrix and a
rank-correlation matrix do not contradict each other.

[–]const double* unur distr cvec get rankcorr (const UNUR_DISTR*

distribution)
Get rank-correlation matrix of distribution. The function returns a pointer to an array of
size dim x dim. The rows of the matrix are stored consecutively in this array. If the requested
matrix is not marked as known the NULL pointer is returned and unur_errno is set to UNUR_
ERR_DISTR_GET.
Important: Do not modify the array that holds the rank-correlation matrix!

[–]int unur distr cvec set marginals (UNUR_DISTR* distribution, UNUR_DISTR*
marginal)

[–]int unur distr cvec set stdmarginals (UNUR_DISTR* distribution,
UNUR_DISTR* marginal)

Sets marginal distribution and standardized marginal distributions of the given distribution
to the same marginal distribution object. The marginal distribution must be an instance of a

Chapter 4: Handling distribution objects 55

continuous univariate distribution object. In conjunction with unur_distr_cvec_set_covar
and unur_distr_cvec_set_mean the standardized marginals must be used, i.e., they should
have mean 0 and standard deviation 1 (if both exist for the given marginal distribution).
Notice that the marginal distribution is copied into the distribution object.

[–]int unur distr cvec set marginal array (UNUR_DISTR* distribution,
UNUR_DISTR** marginals)

[–]int unur distr cvec set stdmarginal array (UNUR_DISTR* distribution,
UNUR_DISTR** marginals)

Analogously to the above unur_distr_cvec_set_marginals and unur_distr_cvec_set_
stdmarginals calls. However, now an array marginals of the pointers to each of the marginal
distributions must be given. It must be an array of size dim, where dim is the dimension
returned by unur_distr_get_dim. Notice: Local copies for each of the entries are stored in
the distribution object. If some of these entries are identical (i.e. contain the same pointer),
then for each of these a new copy is made.

[–]int unur distr cvec set marginal list (UNUR_DISTR* distribution, ...)
[–]int unur distr cvec set stdmarginal list (UNUR_DISTR* distribution, ...)

Similar to the above unur_distr_cvec_set_marginal_array and unur_distr_cvec_set_
stdmarginal_array calls. However, now the pointers to the particular marginal distributions
can be given as parameter and does not require an array of pointers. Additionally the given
distribution objects are immediately destroyed. Thus calls like unur_distr_normal can be
used as arguments. (With unur_distr_cvec_set_marginal_array the result of such call
has to be stored in a pointer since it has to be freed afterwarts to avoid memory leaks!)
If one of the given pointer to marginal distributions is the NULL pointer then the marginal
distributions of distribution are not set (or previous settings are not changed) and an error
code is returned.
Important: All distribution objects given in the argument list are destroyed!

[–]const UNUR_DISTR* unur distr cvec get marginal (const UNUR_DISTR*

distribution, int n)
[–]const UNUR_DISTR* unur distr cvec get stdmarginal (const UNUR_DISTR*

distribution, int n)
Get pointer to the n-th (standardized) marginal distribution object from the given multi-
variate distribution. If this does not exist, NULL is returned. The marginal distributions are
enumerated from 1 to dim, where dim is the dimension returned by unur_distr_get_dim.

[–]int unur distr cvec set pdfparams (UNUR_DISTR* distribution, int par,
const double* params, int n_params)

This function provides an interface for additional parameters for a multivariate distribution
besides mean vector and covariance matrix which have their own calls.
It sets the parameter with number par. par indicates directly which of the parameters is set
and must be a number between 0 and UNUR_DISTR_MAXPARAMS-1 (the upper limit of possible
parameters defined in ‘unuran_config.h’; it is set to 5 but can be changed to any appropriate
nonnegative number.)
The entries of a this parameter are given by the array params of size n params. Notice that
using this interface an An (n x m)-matrix has to be stored in an array of length n params
= n times m; where the rows of the matrix are stored consecutively in this array.
Due to great variety of possible parameters for a multivariate distribution there is no simpler
interface.
If an error occurs no parameters are copied into the parameter object unur_errno is set to
UNUR_ERR_DISTR_DATA.

56 UNURAN User Manual

[–]int unur distr cvec get pdfparams (const UNUR_DISTR* distribution, int
par, const double** params)

Get parameter of the PDF with number par. The pointer to the parameter array is stored
in params, its size is returned by the function. If the requested parameter is not set, then an
error code is returned and params is set to NULL.

Important: Do not change the entries in params!

Derived parameters

The following paramters must be set whenever one of the essential parameters has been set
or changed (and the parameter is required for the chosen method).

[–]int unur distr cvec set mode (UNUR_DISTR* distribution, const double*

mode)
Set mode of the distribution. mode must be a pointer to an array of the size returned by
unur_distr_get_dim. A NULL pointer for mode is interpreted as the zero vector (0,. . . ,0).

[–]const double* unur distr cvec get mode (const UNUR_DISTR* distribution)

Get mode of the distribution. The function returns a pointer to an array of the size returned
by unur_distr_get_dim. If the mode is not marked as known the NULL pointer is returned
and unur_errno is set to UNUR_ERR_DISTR_GET. (There is no difference between the case
where no routine for computing the mode is available and the case where no mode exists for
the distribution at all.)

Important: Do not modify the array that holds the mode!

[–]int unur distr cvec set center (UNUR_DISTR* distribution, const double*

center)
Set center of the distribution. center must be a pointer to an array of the size returned by
unur_distr_get_dim. A NULL pointer for center is interpreted as the zero vector (0,. . . ,0).

The center is used by some methods to shift the distribution in order to decrease numerical
round-off error. If not given explicitly a default is used.

Default: The mode, if given by a unur_distr_cvec_set_mode call; else the mean, if given
by a unur_distr_cvec_set_mean call; otherwise the null vector (0, . . . , 0) .

[–]const double* unur distr cvec get center (UNUR_DISTR* distribution)
Get center of the distribution. The function returns a pointer to an array of the size returned
by unur_distr_get_dim. It always returns some point as there always exists a default for
the center, see unur_distr_cvec_set_center. Important: Do not modify the array that
holds the center!

[–]int unur distr cvec set pdfvol (UNUR_DISTR* distribution, double volume)
Set the volume below the PDF. If vol is non-positive, no volume is set and unur_errno is set
to UNUR_ERR_DISTR_SET.

[–]double unur distr cvec get pdfvol (const UNUR_DISTR* distribution)
Get the volume below the PDF of the distribution. If this volume is not known,
unur_distr_cont_upd_pdfarea is called to compute it. If this is not successful UNUR_
INFINITY is returned and unur_errno is set to UNUR_ERR_DISTR_GET.

Chapter 4: Handling distribution objects 57

4.6 Continuous empirical multivariate distributions

Function reference

[–]UNUR_DISTR* unur distr cvemp new (int dim)
Create a new (empty) object for an empirical multivariate continuous distribution. dim is
the number of components of the random vector (i.e. its dimension). It must be at least
2; otherwise unur_distr_cemp_new should be used to create an object for an empirical
univariate distribution.

Essential parameters

[–]int unur distr cvemp set data (UNUR_DISTR* distribution, const double*

sample, int n_sample)
Set observed sample for empirical distribution. sample is an array of doubles of size dim x
n sample, where dim is the dimension of the distribution returned by unur_distr_get_dim.
The data points must be stored consecutively in sample.

[–]int unur distr cvemp read data (UNUR_DISTR* distribution, const char*

filename)
Read data from file ‘filename’. It reads the first dim double numbers from each line, where
dim is the dimension of the distribution returned by unur_distr_get_dim. Lines that do not
start with +, -, ., or a digit are ignored. (Beware of lines starting with a blank!)

In case of an error (file cannot be opened, too few entries in a line, invalid string for double
in line) no data are copied into the distribution object and an error code is returned.

[–]int unur distr cvemp get data (const UNUR_DISTR* distribution, const
double** sample)

Get number of samples and set pointer sample to array of observations. If no sample has
been given, 0 is returned and sample is set to NULL. If successful sample points to an array
of length dim x n_sample, where dim is the dimension of the distribution returned by unur_
distr_get_dim and n_sample the return value of the function.

Important: Do not modify the array sample.

4.7 MATRix distributions

Distributions for random matrices. Notice that UNURAN uses arrays of doubles to handle
matrices. There the rows of the matrix are stored consecutively.

Function reference

[–]UNUR_DISTR* unur distr matr new (int n_rows, int n_cols)
Create a new (empty) object for a matrix distribution. n rows and n cols are the respective
numbers of rows and columns of the random matrix (i.e. its dimensions). Each must be at
least 2; otherwise unur_distr_cont_new or unur_distr_cvec_new should be used to create
an object for a univariate distribution and a multivariate (vector) distribution.

58 UNURAN User Manual

Essential parameters

[–]int unur distr matr get dim (const UNUR_DISTR* distribution, int*
n_rows, int* n_cols)

Get number of rows and columns of random matrix (its dimension). It returns the total
number of components. In case of an error 0 is returned.

4.8 Discrete univariate distributions

Function reference

[–]UNUR_DISTR* unur distr discr new (void)
Create a new (empty) object for a univariate discrete distribution.

Essential parameters

There are two interfaces for discrete univariate distributions: Either provide a (finite) proba-
bility vector (PV). Or provide a probability mass function (PMF). For the latter case there are
also a couple of derived parameters that are not required when a PV is given.

It is not possible to set both a PMF and a PV directly. However, the PV can be computed
from the PMF (or the CDF if no PMF is available) by means of a unur_distr_discr_make_
pv call. If both the PV and the PMF are given in the distribution object it depends on the
generation method which of these is used.

[–]int unur distr discr set pv (UNUR_DISTR* distribution, const double* pv,
int n_pv)

Set finite probability vector (PV) for a distribution. It is not necessary that the entries in the
given PV sum to 1. n pv must be positive. However, there is no testing whether all entries
in pv are non-negative.
If no domain has been set, then the left boundary is set to 0, by default. If n pv is too large,
e.g. because left boundary + n pv exceeds the range of integers, then the call fails.
Notice it is not possible to set both a PV and a PMF. (E.g., it is not possible to set a PV for
a distribution from UNURAN library of standard distributions.)

[–]int unur distr discr make pv (UNUR_DISTR* distribution)
Compute a PV when a PMF is given. However, when the domain is not given or is too large
and the sum over the PMF is given then the (right) tail of the distribution is chopped off
such that the probability for the tail region is less than 1.e-8. If the sum over the PMF is
not given a PV of maximal length is computed.
The maximal size of the created PV is bounded by the macro UNUR_MAX_AUTO_PV that is
defined in ‘unuran_config.h’.
If successful, the length of the generated PV is returned. If the sum over the PMF on the
chopped tail is not neglible small (i.e. greater than 1.e-8 or unknown) than the negative of
the length of the PV is returned and unur_errno is set to UNUR_ERR_DISTR_SET.
Notice that when a discrete distribution object is created from scratch, then the left boundary
of the PV is set to 0 by default.
If computing a PV fails for some reasons, an error code is returned and unur_errno is set to
UNUR_ERR_DISTR_SET.

Chapter 4: Handling distribution objects 59

[–]int unur distr discr get pv (const UNUR_DISTR* distribution, const
double** pv)

Get length of PV of the distribution and set pointer pv to array of probabilities. If no PV is
given, 0 is returned and pv is set to NULL.
(It does not call unur_distr_discr_make_pv !)

[–]int unur distr discr set pmf (UNUR_DISTR* distribution,
UNUR_FUNCT_DISCR* pmf)

[–]int unur distr discr set cdf (UNUR_DISTR* distribution, UNUR_FUNCT_DISCR*
cdf)

Set respective pointer to the PMF and the CDF of the distribution. These functions must
be of type double funct(int k, const UNUR_DISTR *distr).
It is important to note that all these functions must return a result for all integers k. E.g.,
if the domain of a given PMF is the interval {1,2,3,. . . ,100}, than the given function must
return 0.0 for all points outside this interval.
The default domain for the PMF or CDF is [0, INT_MAX]. The domain can be changed using
a unur_distr_discr_set_domain call.
It is not possible to change such a function. Once the PMF or CDF is set it cannot be
overwritten. A new distribution object has to be used instead.
Notice that it not possible to set both a PV and a PMF, i.e. it is not possible to use this call
after a unur_distr_discr_set_pv call.

[–]double unur distr discr eval pv (int k, const UNUR_DISTR* distribution)
[–]double unur distr discr eval pmf (int k, const UNUR_DISTR* distribution)
[–]double unur distr discr eval cdf (int k, const UNUR_DISTR* distribution)

Evaluate the PV, PMF, and the CDF, respectively, at k. Notice that distribution must not
be the NULL pointer. If no PV is set for the distribution, then unur_distr_discr_eval_pv
behaves like unur_distr_discr_eval_pmf. If the corresponding function is not available for
the distribution, UNUR_INFINITY is returned and unur_errno is set to UNUR_ERR_DISTR_DATA.
IMPORTANT: In the case of a truncated standard distribution these calls always return the
respective values of the untruncated distribution!

[–]int unur distr discr set pmfstr (UNUR_DISTR* distribution, const char*

pmfstr)
This function provides an alternative way to set a PMF of the distribution. pmfstr is a
character string that contains the formula for the PMF, see Section 3.3 [Function String],
page 33, for details. See also the remarks for the unur_distr_discr_set_pmf call.
It is not possible to call this funtion twice or to call this function after a unur_distr_discr_
set_pmf call.

[–]int unur distr discr set cdfstr (UNUR_DISTR* distribution, const char*

cdfstr)
This function provides an alternative way to set a CDF; analogously to the unur_distr_
discr_set_pmfstr call.

[–]char* unur distr discr get pmfstr (const UNUR_DISTR* distribution)
[–]char* unur distr discr get cdfstr (const UNUR_DISTR* distribution)

Get pointer to respective string for PMF and CDF of distribution that is given via the string
interface. This call allocates memory to produce this string. It should be freed when it is not
used any more.

60 UNURAN User Manual

[–]int unur distr discr set pmfparams (UNUR_DISTR* distribution, const
double* params, int n_params)

Set array of parameters for distribution. There is an upper limit for the number of parameters
n params. It is given by the macro UNUR_DISTR_MAXPARAMS in ‘unuran_config.h’. (It is set
to 5 but can be changed to any appropriate nonnegative number.) If n params is negative
or exceeds this limit no parameters are copied into the distribution object and unur_errno
is set to UNUR_ERR_DISTR_NPARAMS.

For standard distributions from the UNURAN library the parameters are checked. Moreover
the domain is updated automatically unless it has been changed before by a unur_distr_
cont_set_domain call. It these parameters are invalid, then no parameters are set and an
error code is returned. Notice that optional parameters are (re-)set to their default values if
not given for UNURAN standard distributions.

Important: Integer parameter must be given as doubles.

[–]int unur distr discr get pmfparams (const UNUR_DISTR* distribution,
const double** params)

Get number of parameters of the PMF and set pointer params to array of parameters. If no
parameters are stored in the object, 0 is returned and params is set to NULL.

[–]int unur distr discr set domain (UNUR_DISTR* distribution, int left, int
right)

Set the left and right borders of the domain of the distribution. This can also be used to
truncate an existing distribution. For setting the boundary to +/- infinity use INT_MAX and
INT_MIN, respectively. If right is not strictly greater than left no domain is set and unur_
errno is set to UNUR_ERR_DISTR_SET. It is allowed to use this call to increase the domain. If
the PV of the discrete distribution is used, than the right boudary is ignored (and internally
set to left + size of PV - 1). Notice that INT_MAX and INT_MIN are interpreted as (minus)
infinity.

Default is [0, INT_MAX].

[–]int unur distr discr get domain (const UNUR_DISTR* distribution, int*
left, int* right)

Get the left and right borders of the domain of the distribution. If the domain is not set
explicitly the interval [INT_MIN, INT_MAX] is assumed and returned. When a PV is given then
the domain is set automatically to [0,size of PV - 1].

Derived parameters

The following paramters must be set whenever one of the essential parameters has been set
or changed (and the parameter is required for the chosen method).

[–]int unur distr discr set mode (UNUR_DISTR* distribution, int mode)
Set mode of distribution.

[–]int unur distr discr upd mode (UNUR_DISTR* distribution)
Recompute the mode of the distribution. This call works properly for distribution objects
from the UNURAN library of standard distributions when the corresponding function is
available. Otherwise a (slow) numerical mode finder is used. If it failes unur_errno is set to
UNUR_ERR_DISTR_DATA.

Chapter 4: Handling distribution objects 61

[–]int unur distr discr get mode (UNUR_DISTR* distribution)
Get mode of distribution. If the mode is not marked as known, unur_distr_discr_upd_mode
is called to compute the mode. If this is not successful INT_MAX is returned and unur_errno
is set to UNUR_ERR_DISTR_GET. (There is no difference between the case where no routine for
computing the mode is available and the case where no mode exists for the distribution at
all.)

[–]int unur distr discr set pmfsum (UNUR_DISTR* distribution, double sum)
Set the sum over the PMF. If sum is non-positive, no sum is set and unur_errno is set to
UNUR_ERR_DISTR_SET.
For a distribution object created by the UNURAN library of standard distributions you
always should use the unur_distr_discr_upd_pmfsum. Otherwise there might be ambiguous
side-effects.

[–]int unur distr discr upd pmfsum (UNUR_DISTR* distribution)
Recompute the sum over the PMF of the distribution. In most cases the normalization
constant is recomputed and thus the sum is 1. This call only works for distribution objects
from the UNURAN library of standard distributions when the corresponding function is
available. Otherwise unur_errno is set to UNUR_ERR_DISTR_DATA.
The call does not work for distributions from the UNURAN library of standard distributions
with truncated domain when the CDF is not available.

[–]double unur distr discr get pmfsum (UNUR_DISTR* distribution)
Get the sum over the PMF of the distribution. If this sum is not known, unur_distr_discr_
upd_pmfsum is called to compute it. If this is not successful UNUR_INFINITY is returned and
unur_errno is set to UNUR_ERR_DISTR_GET.

62 UNURAN User Manual

Chapter 5: Methods for generating non-uniform random variates 63

5 Methods for generating non-uniform random
variates

5.1 Routines for all generator objects

Routines for all generator objects.

Function reference

[–]UNUR_GEN* unur init (UNUR_PAR* parameters)
Initialize a generator object. All necessary information must be stored in the parameter
object.

Important: If an error has occurred a NULL pointer is return. This must not be used for the
sampling routines (this causes a segmentation fault).

Always check whether the call was successful or not!

Important: This call destroys the parameter object automatically. Thus it is not neces-
sary/allowed to free it.

[–]int unur sample discr (UNUR_GEN* generator)
[–]double unur sample cont (UNUR_GEN* generator)
[–]void unur sample vec (UNUR_GEN* generator, double* vector)
[–]void unur sample matr (UNUR_GEN* generator, double* matrix)

Sample from generator object. The three routines depend on the type of the generator object
(discrete or continuous univariate distribution, multivariate distribution, or random matrix).

Notice: UNURAN uses arrays of doubles to handle matrices. There the rows of the matrix
are stored consecutively.

Important: These routines do not check whether generator is an invalid NULL pointer.

[–]void unur free (UNUR_GEN* generator)
Destroy (free) the given generator object.

[–]int unur get dimension (const UNUR_GEN* generator)
Get the number of dimension of a (multivariate) distribution. For a univariate distribution
1 is return.

[–]const char* unur get genid (const UNUR_GEN* generator)
Get identifier string for generator. If UNUR_ENABLE_GENID is not defined in
‘unuran_config.h’ then only the method used for the generator is returned.

[–]const UNUR_DISTR* unur get distr (const UNUR_GEN* generator)
Get pointer to distribution object from generator object. This function should be used with
extreme care. Never manipulate the distribution object returned by this call. (How should
the poor generator object know what you have done?)

64 UNURAN User Manual

5.2 AUTO – Select method automatically

AUTO selects a an appropriate method for the given distribution object automatically. There
are no parameters for this method, yet. But it is planned to give some parameter to describe the
task for which the random variate generator is used for and thus make the choice of the generating
method more appropriate. Notice that the required sampling routine for the generator object
depends on the type of the given distribution object.

The chosen method also depends on the sample size for which the generator object will be
used. If only a few random variates the order of magnitude of the sample size should be set via
a unur_auto_set_logss call.

IMPORTANT: This is an experimental version and the method chosen may change in future
releases of UNURAN.

For an example see Section 2.1 [Example: As short as possible], page 11.

Function reference

[–]UNUR_PAR* unur auto new (const UNUR_DISTR* distribution)
Get default parameters for generator.

[–]int unur auto set logss (UNUR_PAR* parameters, int logss)
Set the order of magnitude for the size of the sample that will be generated by the generator,
i.e., the the common logarithm of the sample size.

Default is 10.

Notice: This feature will be used in future releases of UNURAN only.

5.3 Methods for continuous univariate distributions

Overview of methods

� �
Methods for continuous univariate distributions
sample with unur_sample_cont

method PDF dPDF mode area other
AROU x x [x] T-concave
CSTD build-in standard distribution
HINV [x] [x] CDF
NINV [x] CDF
SROU x x x T-concave
SSR x x x T-concave
TABLE x x [~] all local extrema
TDR x x T-concave
UTDR x x ~ T-concave
 	

Chapter 5: Methods for generating non-uniform random variates 65

Example

/* --- */

/* File: example_cont.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* Example how to sample from a continuous univariate */

/* distribution. */

/* */

/* We build a distribution object from scratch and sample. */

/* --- */

/* Define the PDF and dPDF of our distribution. */

/* */

/* Our distribution has the PDF */

/* */

/* / 1 - x*x if |x| <= 1 */

/* f(x) = < */

/* \ 0 otherwise */

/* */

/* The PDF of our distribution: */

double mypdf(double x, const UNUR_DISTR *distr)

/* The second argument (‘distr’) can be used for parameters */

/* for the PDF. (We do not use parameters in our example.) */

{

if (fabs(x) >= 1.)

return 0.;

else

return (1.-x*x);

} /* end of mypdf() */

/* The derivative of the PDF of our distribution: */

double mydpdf(double x, const UNUR_DISTR *distr)

{

if (fabs(x) >= 1.)

return 0.;

else

return (-2.*x);

} /* end of mydpdf() */

/* --- */

int main()

{

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen; /* generator object */

/* Create a new distribution object from scratch. */

/* Get empty distribution object for a continuous distribution */

distr = unur_distr_cont_new();

66 UNURAN User Manual

/* Fill the distribution object -- the provided information */

/* must fulfill the requirements of the method choosen below. */

unur_distr_cont_set_pdf(distr, mypdf); /* PDF */

unur_distr_cont_set_dpdf(distr, mydpdf); /* its derivative */

unur_distr_cont_set_mode(distr, 0.); /* mode */

unur_distr_cont_set_domain(distr, -1., 1.); /* domain */

/* Choose a method: TDR. */

par = unur_tdr_new(distr);

/* Set some parameters of the method TDR. */

unur_tdr_set_variant_gw(par);

unur_tdr_set_max_sqhratio(par, 0.90);

unur_tdr_set_c(par, -0.5);

unur_tdr_set_max_intervals(par, 100);

unur_tdr_set_cpoints(par, 10, NULL);

/* Create the generator object. */

gen = unur_init(par);

/* Notice that this call has also destroyed the parameter */

/* object ‘par’ as a side effect. */

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* It is possible to reuse the distribution object to create */

/* another generator object. If you do not need it any more, */

/* it should be destroyed to free memory. */

unur_distr_free(distr);

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

Example (String API)

/* --- */

/* File: example_cont_str.c */

/* --- */

/* String API. */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

Chapter 5: Methods for generating non-uniform random variates 67

/* --- */

/* Example how to sample from a continuous univariate */

/* distribution. */

/* We use a generic distribution object and sample. */

/* */

/* The PDF of our distribution is given by */

/* */

/* / 1 - x*x if |x| <= 1 */

/* f(x) = < */

/* \ 0 otherwise */

/* */

/* --- */

int main()

{

int i; /* loop variable */

double x; /* will hold the random number */

/* Declare UNURAN generator object. */

UNUR_GEN *gen; /* generator object */

/* Create the generator object. */

/* Use a generic continuous distribution. */

/* Choose a method: TDR. */

gen = unur_str2gen("distr = cont; pdf=\"1-x*x\"; domain=(-1,1); mode=0. & \

method=tdr; variant_gw; max_sqhratio=0.90; c=-0.5; \

max_intervals=100; cpoints=10");

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

5.3.1 AROU – Automatic Ratio-Of-Uniforms method

Required: T-concave PDF, dPDF

Optional: mode

Speed: Set-up: slow, Sampling: fast

reference: [LJa00]

68 UNURAN User Manual

AROU is a variant of the ratio-of-uniforms method that uses the fact that the transformed
region is convex for many distributions. It works for all T-concave distributions with T(x) =
-1/sqrt(x).

It is possible to use this method for correlation induction by setting an auxiliary uniform
random number generator via the unur_set_urng_aux call. (Notice that this must be done
after a possible unur_set_urng call.) When an auxiliary generator is used then the number of
used uniform random numbers that is used up for one generated random variate is constant and
equal to 1.

There exists a test mode that verifies whether the conditions for the method are satisfied or
not while sampling. It can be switched on by calling unur_arou_set_verify and unur_arou_
chg_verify, respectively. Notice however that sampling is (much) slower then.

For densities with modes not close to 0 it is suggested either to set the mode of the distribution
or to use the unur_arou_set_center call to provide some information about the main part of
the PDF to avoid numerical problems.

Function reference

[–]UNUR_PAR* unur arou new (const UNUR_DISTR* distribution)
Get default parameters for generator.

[–]int unur arou set usedars (UNUR_PAR* parameters, int usedars)
If usedars is set to TRUE, “derandomized adaptive rejection sampling” (DARS) is used in
setup. Segments where the area between hat and squeeze is too large compared to the average
area between hat and squeeze over all intervals are split. This procedure is repeated until
the ratio between area below squeeze and area below hat exceeds the bound given by unur_
arou_set_max_sqhratio call or the maximum number of segments is reached. Moreover, it
also aborts when no more segments can be found for splitting.
Segments are split such that the angle of the segments are halved (corresponds to arc-mean
rule of method TDR (see Section 5.3.12 [TDR], page 89)).
Default is FALSE.

[–]int unur arou set darsfactor (UNUR_PAR* parameters, double factor)
Set factor for “derandomized adaptive rejection sampling”. This factor is used to determine
the segments that are “too large”, that is, all segments where the area between squeeze and
hat is larger than factor times the average area over all intervals between squeeze and hat.
Notice that all segments are split when factor is set to 0., and that there is no splitting at
all when factor is set to UNUR_INFINITY.
Default is 0.99. There is no need to change this parameter.

[–]int unur arou set max sqhratio (UNUR_PAR* parameters, double max_ratio)
Set upper bound for the ratio (area inside squeeze) / (area inside envelope). It must be a
number between 0 and 1. When the ratio exceeds the given number no further construction
points are inserted via adaptive rejection sampling. Use 0 if no construction points should be
added after the setup. Use 1 if adding new construction points should not be stopped until
the maximum number of construction points is reached.
Default is 0.99.

[–]double unur arou get sqhratio (const UNUR_GEN* generator)
Get the current ratio (area inside squeeze) / (area inside envelope) for the generator. (In
case of an error UNUR_INFINITY is returned.)

Chapter 5: Methods for generating non-uniform random variates 69

[–]double unur arou get hatarea (const UNUR_GEN* generator)
Get the area below the hat for the generator. (In case of an error UNUR_INFINITY is returned.)

[–]double unur arou get squeezearea (const UNUR_GEN* generator)
Get the area below the squeeze for the generator. (In case of an error UNUR_INFINITY is
returned.)

[–]int unur arou set max segments (UNUR_PAR* parameters, int max_segs)
Set maximum number of segements. No construction points are added after the setup when
the number of segments succeeds max segs.
Default is 100.

[–]int unur arou set cpoints (UNUR_PAR* parameters, int n_stp, const double*

stp)
Set construction points for enveloping polygon. If stp is NULL, then a heuristical rule of thumb
is used to get n stp construction points. This is the default behavior when this routine is not
called. The (default) number of construction points is 30, then.

[–]int unur arou set center (UNUR_PAR* parameters, double center)
Set the center (approximate mode) of the PDF. It is used to find construction points by
means of a heuristical rule of thumb. If the mode is given the center is set equal to the mode.
It is suggested to use this call to provide some information about the main part of the PDF
to avoid numerical problems, when the most important part of the PDF is not close to 0.
By default the mode is used as center if available. Otherwise 0 is used.

[–]int unur arou set usecenter (UNUR_PAR* parameters, int usecenter)
Use the center as construction point. Default is TRUE.

[–]int unur arou set guidefactor (UNUR_PAR* parameters, double factor)
Set factor for relative size of the guide table for indexed search (see also method DGT
Section 5.7.3 [DGT], page 111). It must be greater than or equal to 0. When set to 0, then
sequential search is used.
Default is 2.

[–]int unur arou set verify (UNUR_PAR* parameters, int verify)
[–]int unur arou chg verify (UNUR_GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the condition squeeze(x) <= PDF(x) <=
hat(x) is violated for some x then unur_errno is set to UNUR_ERR_GEN_CONDITION. However
notice that this might happen due to round-off errors for a few values of x (less than 1%).
Default is FALSE.

[–]int unur arou set pedantic (UNUR_PAR* parameters, int pedantic)
Sometimes it might happen that unur_init has been executed successfully. But when ad-
ditional construction points are added by adaptive rejection sampling, the algorithm detects
that the PDF is not T-concave.
With pedantic being TRUE, the sampling routine is then exchanged by a routine that simply
returns UNUR_INFINITY. Otherwise the new point is not added to the list of construction
points. At least the hat function remains T-concave.
Setting pedantic to FALSE allows sampling from a distribution which is “almost” T-concave
and small errors are tolerated. However it might happen that the hat function cannot be

70 UNURAN User Manual

improved significantly. When the hat function that has been constructed by the unur_init
call is extremely large then it might happen that the generation times are extremely high
(even hours are possible in extremely rare cases).
Default is FALSE.

5.3.2 CSTD – Continuous STandarD distributions

Required: standard distribution from UNURAN library (see Chapter 7 [Standard distribu-
tions], page 121).

Speed: Set-up: fast, Sampling: depends on distribution and generator

CSTD is a wrapper for special generators for continuous univariate standard distributions.
It only works for distributions in the UNURAN library of standard distributions (see Chapter 7
[Standard distributions], page 121). If a distribution object is provided that is build from scratch,
or if no special generator for the given standard distribution is provided, the NULL pointer is
returned.

For some distributions more than one special generator (variants) is possible. These can
be choosen by a unur_cstd_set_variant call. For possible variants see Chapter 7 [Standard
distributions], page 121. However the following are common to all distributions:

UNUR_STDGEN_DEFAULT
the default generator.

UNUR_STDGEN_FAST
the fastest available special generator.

UNUR_STDGEN_INVERSION
the inversion method (if available).

Notice that the variant UNUR_STDGEN_FAST for a special generator may be slower than one
of the universal algorithms! Additional variants may exist for particular distributions.

Sampling from truncated distributions (which can be constructed by changing the de-
fault domain of a distribution by means of unur_distr_cont_set_domain or unur_cstd_chg_
truncated calls) is possible but requires the inversion method.

It is possible to change the parameters and the domain of the chosen distribution without
building a new generator object.

Function reference

[–]UNUR_PAR* unur cstd new (const UNUR_DISTR* distribution)
Get default parameters for new generator. It requires a distribution object for a continuous
univariant distribution from the UNURAN library of standard distributions (see Chapter 7
[Standard distributions], page 121).
Using a truncated distribution is allowed only if the inversion method is available and selected
by the unur_cstd_set_variant call immediately after creating the parameter object. Use
a unur_distr_cont_set_domain call to get a truncated distribution. To change the domain
of a (truncated) distribution of a generator use the unur_cstd_chg_truncated call.

[–]int unur cstd set variant (UNUR_PAR* parameters, unsigned variant)
Set variant (special generator) for sampling from a given distribution. For possible variants
see Chapter 7 [Standard distributions], page 121.

Chapter 5: Methods for generating non-uniform random variates 71

Common variants are UNUR_STDGEN_DEFAULT for the default generator, UNUR_STDGEN_FAST
for (one of the) fastest implemented special generators, and UNUR_STDGEN_INVERSION for the
inversion method (if available). If the selected variant number is not implemented, then an
error code is returned and the variant is not changed.

[–]int unur cstd chg pdfparams (UNUR_GEN* generator, double* params, int
n_params)

Change array of parameters of the distribution in a given generator object. If the given
parameters are invalid for the distribution, no parameters are set. Notice that optional pa-
rameters are (re-)set to their default values if not given for UNURAN standard distributions.

[–]int unur cstd chg truncated (UNUR_GEN* generator, double left, double
right)

Change left and right border of the domain of the (truncated) distribution. This is only
possible if the inversion method is used. Otherwise this call has no effect and an error code
is returned.
Notice that the given truncated domain must be a subset of the domain of the given distri-
bution. The generator always uses the intersection of the domain of the distribution and the
truncated domain given by this call.
Important: If the CDF is (almost) the same for left and right and (almost) equal to 0 or 1,
then the truncated domain is not chanced and the call returns an error code.
Notice: If the parameters of the distribution has been changed by a unur_cstd_chg_
pdfparams call it is recommended to set the truncated domain again, since the former call
might change the domain of the distribution but not update the values for the boundaries of
the truncated distribution.

5.3.3 HINV – Hermite interpolation based INVersion of CDF

Required: CDF

Optional: PDF, dPDF

Speed: Set-up: (very) slow, Sampling: (very) fast

HINV is a variant of numerical inversion, where the inverse CDF is approximated using
Hermite interpolation. These splines have to be computed in a setup step. However, it only
works for distributions with bounded domain; for distributions with unbounded domain the
tails are chopped off such that the probability for the tail regions is small compared to the given
u-resulution. For finding these cut points the algorithm starts with the region [-1.e20,1.e20].
For the exceptional case where this might be too small (or one knows this region and wants to
avoid this search heuristics) it can be changed using the unur_hinv_set_boundary call.

It is possible to use this method for generating from truncated distributions. It even can be
changed for an existing generator object by an unur_hinv_chg_truncated call.

This method is not exact, as it only produces random variates of the approximated distri-
bution. Nevertheless, the numerical error in "u-direction" (i.e. for X = "approximate inverse
CDF"(U) |U-CDF(X)|) can be controlled by means of the unur_hinv_set_u_resolution. No-
tice that very small values of the u-resolution are possible but may increase the cost for the setup
step.

As the possible maximal error is only estimated in the setup it may be necessary to set some
special design points for computing the Hermite interpolation to guarantee that the maximal u-
error can not be bigger than desired. Such points are points where the density is not differentiable

72 UNURAN User Manual

or has a local extremum. Notice that there is no necessity to do so. However, if you do not
provide these points to the algorithm there might be a small chance that the approximation
error is larger than the given u-resolution, or that the required number of intervals is larger than
necessary. Setting such design points can be done using the unur_hinv_set_cpoints call. If
the mode for a unimodal distribution is set in the distribution object this mode is automatically
used as design-point if the unur_hinv_set_cpoints call is not used.

As already mentioned the maximal error of this approximation is only estimated. If this error
is crucial for an application we recommend to compute this error using unur_hinv_estimate_
error especially when a non-standard distribution is used.

Function reference

[–]UNUR_PAR* unur hinv new (const UNUR_DISTR* distribution)
Get default parameters for generator.

[–]int unur hinv set order (UNUR_PAR* parameters, int order)
Set order of Hermite interpolation. Valid orders are 1, 3, and 5. Notice that order greater
than 1 requires the density of the distribution, and order greater than 3 even requires the
derivative of the density. Using order 1 results for most distributions in a huge number of
intervals and is therefore not recommended. If the maximal error in u-direction is very small
(say smaller than 1.e-10), order 5 is recommended as it leads to considerably fewer design
points.
Default is 3 if the density is given and 1 otherwise.

[–]int unur hinv set u resolution (UNUR_PAR* parameters, double
u_resolution)

Set maximal error in u-direction. However, the given u-error must not be smaller than
machine epsilon (DBL_EPSILON) and should not be too close to this value. As the resoultion
of most uniform random number sources is 2^(-32) = 2.3e-10, a value of 1.e-10 leads to
an inversion algorithm that could be called exact. For most simulations slighly bigger values
for the maximal error are enough as well.
Default is 10^-8.

[–]int unur hinv set cpoints (UNUR_PAR* parameters, const double* stp, int
n_stp)

Set starting construction points (nodes) for Hermite interpolation.
As the possible maximal error is only estimated in the setup it may be necessary to set some
special design points for computing the Hermite interpolation to guarantee that the maximal
u-error can not be bigger than desired. We suggest to include as special design points all local
extrema of the density, all points where the density is not differentiable, and isolated points
inside of the domain with density 0. If there is an interval with density constant equal to 0
inside of the given domain of the density, both endpoints of this interval should be included
as special design points. Notice that there is no necessity to do so. However, if these points
are not provided to the algorithm the approximation error might be larger than the given
u-resolution, or the required number of intervals could be larger than necessary.
Important : Notice that the given points must be in increasing order and they must be disjoint.
Important : The boundary point of the computational region must not be given in this list!
Points outside the boundary of the computational region are ignored.
Default is for unimodal densities - if known - the mode of the density, if it is not equal to the
border of the domain.

Chapter 5: Methods for generating non-uniform random variates 73

[–]int unur hinv set boundary (UNUR_PAR* parameters, double left, double
right)

Set the left and right boundary of the computation interval. The approximate CDF is only
constructed inside this interval. The probability outside of this region must not be of com-
putational relevance. Of course +/- UNUR_INFINITY is not allowed.

Important : This call does not change the domain of the given distribution itself. But it
restricts the domain for the resulting random variates.

Default is 1.e20.

[–]int unur hinv set guidefactor (UNUR_PAR* parameters, double factor)
Set factor for relative size of the guide table for indexed search (see also method DGT
Section 5.7.3 [DGT], page 111). It must be greater than or equal to 0. When set to 0, then
sequential search is used.

Default is 1.

[–]int unur hinv set max intervals (UNUR_PAR* parameters, int max_ivs)
Set maximum number of intervals. No generator object is created if the necessary number of
intervals for the Hermite interpolation exceeds max ivs. It is used to prevent the algorithm
to eat up all memory for very badly shaped CDFs.

Default is 1000000 (1.e6).

[–]int unur hinv get n intervals (const UNUR_GEN* generator)
Get number of nodes (design points) used for Hermite interpolation in the generator object.
The number of intervals is the number of nodes minus 1. It returns an error code in case of
an error.

[–]double unur hinv eval approxinvcdf (const UNUR_GEN* generator, double u)

Evaluate Hermite interpolation of inverse CDF at u. If u is out of the domain [0,1] then
unur_errno is set to UNUR_ERR_DOMAIN and the respective bound of the domain of the distri-
bution are returned (which is -UNUR_INFINITY or UNUR_INFINITY in the case of unbounded
domains).

Notice: This function always evaluates the inverse CDF of the given distribution. A call to
unur_hinv_chg_truncated call has no effect.

[–]int unur hinv chg truncated (UNUR_GEN* generator, double left, double
right)

Changes the borders of the domain of the (truncated) distribution.

Notice that the given truncated domain must be a subset of the domain of the given distri-
bution. The generator always uses the intersection of the domain of the distribution and the
truncated domain given by this call. The tables of splines are not recomputed. Thus it might
happen that the relative error for the generated variates from the truncated distribution is
greater than the bound for the non-truncated distribution. This call also fails when the CDF
values of the boundary points are too close, i.e. when only a few different floating point
numbers would be computed due to round-off errors with floating point arithmetic.

When failed an error code is returned.

Important : Always check the return code since the domain is not changed in case of an error.

74 UNURAN User Manual

[–]int unur hinv estimate error (const UNUR_GEN* generator, int samplesize,
double* max_error, double* MAE)

Estimate maximal u-error and mean absolute error (MAE) for generator by means of Monte-
Carlo simulation with sample size samplesize. The results are stored in max error and MAE,
respectively.

It returns UNUR_SUCCESS if successful.

5.3.4 HRB – Hazard Rate Bounded

Required: bounded hazard rate

Optional: upper bound for hazard rate

Speed: Set-up: fast, Sampling: slow

Generates random variate with given hazard rate. It requires that the distribution object
contains a hazard rate and it requires an upper bound for the hazard rate which must be set
using unur_hrb_set_upperbound call. If no such upper bound is given it is assumed that the
upper bound can be achieved by evaluating the hazard rate at the left hand boundary of the
domain of the distribution.

It is important to note that the domain of the distribution can be set via a unur_distr_
cont_set_domain call. However, the left border must not be negative. Otherwise it is set to 0.
This is also the default if no domain is given at all. For computational reasons the right border
is always set to UNUR_INFINITY independently of the given domain. Thus for domains bounded
from right the function for computing the hazard rate should return UNUR_INFINITY right of
this domain.

For distributions with decreasing hazard rates use method HRD, which is faster. For distri-
butions with increasing hazard rate method HRI is required.

Function reference

[–]UNUR_PAR* unur hrb new (const UNUR_DISTR* distribution)
Get default parameters for generator.

[–]int unur hrb set upperbound (UNUR_PAR* parameters, double upperbound)
Set upper bound for hazard rate. If this call is not used it is assumed that the the maximum
of the hazard rate is achieved at the left hand boundary of the domain of the distribution.

[–]int unur hrb set verify (UNUR_PAR* parameters, int verify)
[–]int unur hrb chg verify (UNUR_GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the hazard rate is not bounded by the
given bound, then unur_errno is set to UNUR_ERR_GEN_CONDITION.

Default is FALSE.

5.3.5 HRD – Hazard Rate Decreasing

Required: decreasing (non-increasing) hazard rate

Speed: Set-up: fast, Sampling: slow

Chapter 5: Methods for generating non-uniform random variates 75

Generates random variate with given non-increasing hazard rate. It is necessary that the
distribution object contains this hazard rate. Decreasing hazard rate implies that the corre-
sponding PDF of the distribution has heavier tails than the exponential distribution (which has
constant hazard rate).

It is important to note that the domain of the distribution can be set via a unur_distr_cont_
set_domain call. However, only the left hand boundary is used. For computational reasons the
right hand boundary is always reset to UNUR_INFINITY. If no domain is given by the user then
the left hand boundary is set to 0.

For distributions which do not have decreasing hazard rates but are bounded from above use
method HRB. For distributions with increasing hazard rate method HRI is required.

Function reference

[–]UNUR_PAR* unur hrd new (const UNUR_DISTR* distribution)
Get default parameters for generator.

[–]int unur hrd set verify (UNUR_PAR* parameters, int verify)
[–]int unur hrd chg verify (UNUR_GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the hazard rate is not bounded by the
given bound, then unur_errno is set to UNUR_ERR_GEN_CONDITION.
Default is FALSE.

5.3.6 HRI – Hazard Rate Increasing

Required: increasing (non-decreasing) hazard rate

Speed: Set-up: fast, Sampling: slow

Generates random variate with given non-increasing hazard rate. It is necessary that the dis-
tribution object contains this hazard rate. Increasing hazard rate implies that the corresponding
PDF of the distribution has heavier tails than the exponential distribution (which has constant
hazard rate).

It is important to note that the domain of the distribution can be set via a unur_distr_cont_
set_domain call. However, only the left hand boundary is used. For computational reasons the
right hand boundary is always reset to UNUR_INFINITY. If no domain is given by the user then
the left hand boundary is set to 0.

For distributions with decreasing hazard rate method HRD is required. For distributions
which do not have increasing or decreasing hazard rates but are bounded from above use method
HRB.

Function reference

[–]UNUR_PAR* unur hri new (const UNUR_DISTR* distribution)
Get default parameters for generator.

[–]int unur hri set p0 (UNUR_PAR* parameters, double p0)
Set design point for algorithm. It is used to split the domain of the distribution. Values for
p0 close to the expectation of the distribution results in a relatively good performance of the
algorithm. It is important that the hazard rate at this point must be greater than 0 and less
than UNUR_INFINITY.
Default: left boundary of domain + 1.

76 UNURAN User Manual

[–]int unur hri set verify (UNUR_PAR* parameters, int verify)
[–]int unur hri chg verify (UNUR_GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the hazard rate is not bounded by the
given bound, then unur_errno is set to UNUR_ERR_GEN_CONDITION.
Default is FALSE.

5.3.7 NINV – Numerical INVersion

Required: CDF

Optional: PDF

Speed: Set-up: optional, Sampling: (very) slow

NINV is the implementation of numerical inversion. For finding the root it is possible to
choose between Newton’s method and the regula falsi (combined with interval bisectioning).
The regula falsi requires only the CDF while Newton’s method also requires the PDF.

It is possible to use this method for generating from truncated distributions. It even can be
changed for an existing generator object by an unur_ninv_chg_truncated call.

To speed up the marginal generation time a table with suitable starting points can be com-
puted in the setup. Using such a table can be switched on by means of a unur_ninv_set_table
call where the table size is given as a parameter. The table is still useful when the (truncated)
domain is changed often, since it is computed for the domain of the given distribution. (It is
not possible to enlarge this domain.) If it is necessary to recalculate the table during sampling,
the command unur_ninv_chg_table can be used.

As a rule of thumb using such a table is appropriate when the number of generated points
exceeds the table size by a factor of 100.

The standard number of iterations of NINV should be enough for all reasonable cases. Nev-
ertheless it is possible to adjust the maximal number of iterations with the command unur_
ninv_[set|chg]_max_iter.

To speed up this method (at the expense of the accuracy) it is possible to change the maximum
error allowed in x with unur_ninv_[set|chg]_x_resolution.

NINV tries to use proper starting values for both the regala falsi and Newton’s method. Of
course the user might have more knowledge about the properties of the underlying distribution
and is able to share his wisdom with NINV using the command unur_ninv_[set|chg]_start.

It is also possible to change the parameters of the given distribution by a unur_ninv_chg_
pdfparams call. If a table exists, it will be recomputed immediately.

Default algorithm is regula falsi. It is slightly slower but numerically much more stable than
Newton’s algorithm.

It might happen that NINV aborts unur_sample_cont without computing the correct value
(because the maximal number iterations has been exceeded). Then the last approximate value
for x is returned (with might be fairly false) and unur_error is set to UNUR_ERR_GEN_SAMPLING.

Function reference

[–]UNUR_PAR* unur ninv new (const UNUR_DISTR* distribution)
Get default parameters for generator.

[–]int unur ninv set useregula (UNUR_PAR* parameters)
Switch to regula falsi combined with interval bisectioning. (This the default.)

Chapter 5: Methods for generating non-uniform random variates 77

[–]int unur ninv set usenewton (UNUR_PAR* parameters)
Switch to Newton’s method. Notice that it is numerically less stable than regula falsi. It
it is not possible to invert the CDF for a particular random number U when calling unur_
sample_cont, unur_error is set to UNUR_ERR_ and UNUR_INFINITY is returned. Thus it is
recommended to check unur_error before using the result of the sampling routine.

[–]int unur ninv set max iter (UNUR_PAR* parameters, int max_iter)
Set number of maximal iterations. Default is 40.

[–]int unur ninv set x resolution (UNUR_PAR* parameters, double
x_resolution)

Set maximal relative error. Default is 10^-8.

[–]int unur ninv set start (UNUR_PAR* parameters, double left, double right)
Set starting points. If not set, suitable values are chosen automatically.

Newton: left: starting point
Regula falsi: left, right: boundary of starting interval

If the starting points are not set then the follwing points are used by default:

Newton: left: CDF(left) = 0.5
Regula falsi: left: CDF(left) = 0.1

right: CDF(right) = 0.9

If left == right, then UNURAN always uses the default starting points!

[–]int unur ninv set table (UNUR_PAR* parameters, int no_of_points)
Generates a table with no of points points containing suitable starting values for the itera-
tion. The value of no of points must be at least 10 (otherwise it will be set to 10 automati-
cally).

The table points are chosen such that the CDF at these points form an equidistance sequence
in the interval (0,1).

If a table is used, then the starting points given by unur_ninv_set_start are ignored.

No table is used by default.

[–]int unur ninv chg max iter (UNUR_GEN* generator, int max_iter)
Change the maximum number of iterations.

[–]int unur ninv chg x resolution (UNUR_GEN* generator, double
x_resolution)

Change the maximal relative error in x.

[–]int unur ninv chg start (UNUR_GEN* gen, double left, double right)
Change the starting points for numerical inversion. If left==right, then UNURAN uses the
default starting points (see unur_ninv_set_start).

[–]int unur ninv chg table (UNUR_GEN* gen, int no_of_points)
Recomputes a table as described in unur_ninv_set_table.

78 UNURAN User Manual

[–]int unur ninv chg truncated (UNUR_GEN* gen, double left, double right)
Changes the borders of the domain of the (truncated) distribution.
Notice that the given truncated domain must be a subset of the domain of the given distri-
bution. The generator always uses the intersection of the domain of the distribution and the
truncated domain given by this call. Moreover the starting point(s) will not be changed.
Important: If the CDF is (almost) the same for left and right and (almost) equal to 0 or 1,
then the truncated domain is not chanced and the call returns an error code.
Notice: If the parameters of the distribution has been changed by a unur_ninv_chg_
pdfparams call it is recommended to set the truncated domain again, since the former call
might change the domain of the distribution but not update the values for the boundaries of
the truncated distribution.

[–]int unur ninv chg pdfparams (UNUR_GEN* generator, double* params, int
n_params)

Change array of parameters of the distribution in a given generator object.
For standard distributions from the UNURAN library the parameters are checked. It these
are invalid, then an error code is returned. Moreover the domain is updated automatically
unless it has been changed before by a unur_distr_discr_set_domain call. Notice that
optional parameters are (re-)set to their default values if not given for UNURAN standard
distributions.
For other distributions params is simply copied into to distribution object. It is only checked
that n params does not exceed the maximum number of parameters allowed. Then an error
code is returned and unur_errno is set to UNUR_ERR_DISTR_NPARAMS.

5.3.8 NROU – Naive Ratio-Of-Uniforms method

Required: PDF

Optional: mode, center, bounding rectangle for acceptance region

Speed: Set-up: slow or fast, Sampling: moderate

reference: [HLD04: Sect.2.4]

NROU is an implementation of the ratio-of-uniforms method which uses (minimal) bounding
rectangles, see Section A.4 [Ratio-of-Uniforms], page 148. The coordinates of this rectangles are
given by

v+ = sup
x

√
f(x),

u− = inf
x

(x− c)
√

f(x),

u+ = sup
x

(x− c)
√

f(x).

Chapter 5: Methods for generating non-uniform random variates 79

where c is the center of the distribution. These bounds can either be given directly, or these
are computed automatically by means of an numerical routine. Of course this can fail, especially
when this rectangle is not bounded.

It is important to note that the algorithm works with PDF (x− center) instead of PDF (x)
, i.e. the bounding rectangle that have to be provided are for the PDF (x − center) . This is
important as otherwise the acceptance region can become a very long and skinny ellipsoid along
a diagonal of the (huge) bounding rectangle.

How To Use

For using the NROU method UNURAN needs the PDF of the distribution. The bounding
rectangle can be given by the unur_vnrou_set_u and unur_vnrou_set_v calls. If these are not
called then the minimal bounding rectangle is computed automatically. Using unur_vnrou_set_
verify and unur_vnrou_chg_verify one can run the sampling algorithm in a checking mode,
i.e., in every cycle of the rejection loop it is checked whether the used rectangle indeed enclosed
the acceptance region of the distribution. When in doubt (e.g., when it is not clear whether the
numerical routine has worked correctly) this can be used to run a small Monte Carlo study.

Function reference

[–]UNUR_PAR* unur nrou new (const UNUR_DISTR* distribution)
Get default parameters for generator.

[–]int unur nrou set u (UNUR_PAR* parameters, double umin, double umax)
Sets left and right boundary of bounding rectangle. If no values are given, the boundary of
the minimal bounding rectangle is computed numerically.

Notice: Computing the minimal bounding rectangle may fail under some circumstances. In
particular for multimodal distributions this might fail. For Tc -concave distributions with
c = −1/2 it should work.

Default: not set.

[–]int unur nrou set v (UNUR_PAR* parameters, double vmax)
Set upper boundary for bounding rectangle. If this value is not given then

√
PDF (mode) is

used instead.

Notice: When the mode is not given for the distribution object, then it will be computed
numerically.

Default: not set.

[–]int unur nrou set center (UNUR_PAR* parameters, double center)
Set the center (µ) of the PDF. For distributions like the gamma distribution with large shape
parameters the acceptance region becomes a long inclined skinny oval with a large bounding
rectangle and thus an extremely large rejection constant. Using the center shifts the mode
of the distribution near the origin and thus makes the bounding box of the acception region
smaller.

Default: Mode if known, else 0.

80 UNURAN User Manual

[–]int unur nrou set verify (UNUR_PAR* parameters, int verify)
Turn verifying of algorithm while sampling on/off.
If the condition PDF(x) <= hat(x) is violated for some x then unur_errno is set to UNUR_
ERR_GEN_CONDITION. However notice that this might happen due to round-off errors for a
few values of x (less than 1%).
Default is FALSE.

[–]int unur nrou chg verify (UNUR_GEN* generator, int verify)
Change the verifying of algorithm while sampling on/off.

5.3.9 SROU – Simple Ratio-Of-Uniforms method

Required: T-concave PDF, mode, area

Speed: Set-up: fast, Sampling: slow

reference: [LJa01] [LJa02]

SROU is based on the ratio-of-uniforms method but uses universal inequalities for construct-
ing a (universal) bounding rectangle. It works for all T-concave distributions (including log-
concave and T-concave distributions with T(x) = -1/sqrt(x)).

It requires the PDF, the (exact) location of the mode and the area below the given PDF.
Moreover an (optional) parameter r can be given, to adjust the generator to the given distri-
bution. This parameter is strongly related parameter c for transformed density rejection via
the formula c = -r/(r+1). r should be set as small as possible but the given density must be
T c-concave for the corresponding c. The default setting for r is 1.

The parameter r can be any value larger than or equal to 1. The rejection constant depends
on the chosen parameter r but not on the particular distribution. It is 4 for r equal to 1 and
higher for higher values of r. It is important to note that different algorithms for different values
of r: If r equal to 1 this is much faster than the algorithm for r greater than 1.

Optionally the CDF at the mode can be given to increase the performance of the algorithm
by means of the unur_srou_set_cdfatmode call. Then the rejection constant is reduced by
1/2 and (if r=1) even a universal squeeze can (but need not be) used. A way to increase the
performance of the algorithm when the CDF at the mode is not provided is the usage of the
mirror principle (only if r=1). However using squeezes and using the mirror principle is not
recommended in general (see below).

If the exact location of the mode is not known, then use the approximate location and provide
the (exact) value of the PDF at the mode by means of the unur_srou_set_pdfatmode call. But
then unur_srou_set_cdfatmode must not be used. Notice if no mode is given at all, a (slow)
numerical mode finder will be used.

If the (exact) area below the PDF is not known, then an upper bound can be used instead
(which of course increases the rejection constant). But then the squeeze flag must not be set
and unur_srou_set_cdfatmode must not be used.

It is even possible to give an upper bound for the area below the PDF only. However then
the (upper bound for the) area below the PDF has to be multiplied by the ratio between the
upper bound and the lower bound of the PDF at the mode. Again setting the squeeze flag and
using unur_srou_set_cdfatmode is not allowed.

It is possible to change the parameters and the domain of the chosen distribution without
building a new generator object using the unur_srou_chg_pdfparams and unur_srou_chg_
domain call, respectively. But then unur_srou_chg_pdfarea, unur_srou_chg_mode and unur_
srou_chg_cdfatmode have to be used to reset the corresponding figures whenever they have

Chapter 5: Methods for generating non-uniform random variates 81

changed. If the PDF at the mode has been provided by a unur_srou_set_pdfatmode call,
additionally unur_srou_chg_pdfatmode must be used (otherwise this call is not necessary since
then this figure is computed directly from the PDF). If any of mode, PDF or CDF at the mode,
or the area below the mode has been changed, then unur_srou_reinit must be executed.
(Otherwise the generator produces garbage).

There exists a test mode that verifies whether the conditions for the method are satisfied or
not while sampling. It can be switched on by calling unur_srou_set_verify and unur_srou_
chg_verify, respectively. Notice however that sampling is (a little bit) slower then.

Function reference

[–]UNUR_PAR* unur srou new (const UNUR_DISTR* distribution)
Get default parameters for generator.

[–]int unur srou reinit (UNUR_GEN* generator)
Update an existing generator object after the distribution has been modified. It must be
executed whenever the parameters or the domain of the distributions have been changed (see
below). It is faster than destroying the existing object and building a new one from scratch.
If reinitialization has been successful UNUR_SUCCESS is returned, in case of a failure an error
code is returned.

[–]int unur srou set r (UNUR_PAR* parameters, double r)
Set parameter r for transformation. Only values greater than or equal to 1 are allowed. The
performance of the generator decreases when r is increased. On the other hand r must not
be set to small, since the given density must be T c-concave for c = -r/(r+1).
Notice: If r is set to 1 a simpler and much faster algorithm is used then for r greater than
one.
For computational reasons values of r that are greater than 1 but less than 1.01 are always
set to 1.01.
Default is 1.

[–]int unur srou set cdfatmode (UNUR_PAR* parameters, double Fmode)
Set CDF at mode. When set, the performance of the algorithm is increased by factor 2.
However, when the parameters of the distribution are changed unur_srou_chg_cdfatmode
has to be used to update this value.
Default: not set.

[–]int unur srou set pdfatmode (UNUR_PAR* parameters, double fmode)
Set pdf at mode. When set, the PDF at the mode is never changed. This is to avoid additional
computations, when the PDF does not change when parameters of the distributions vary. It
is only useful when the PDF at the mode does not change with changing parameters of the
distribution.
IMPORTANT: This call has to be executed after a possible call of unur_srou_set_r. Default:
not set.

[–]int unur srou set usesqueeze (UNUR_PAR* parameters, int usesqueeze)
Set flag for using universal squeeze (default: off). Using squeezes is only useful when the
evaluation of the PDF is (extremely) expensive. Using squeezes is automatically disabled
when the CDF at the mode is not given (then no universal squeezes exist).
Default is FALSE.

82 UNURAN User Manual

[–]int unur srou set usemirror (UNUR_PAR* parameters, int usemirror)
Set flag for using mirror principle (default: off). Using the mirror principle is only useful when
the CDF at the mode is not known and the evaluation of the PDF is rather cheap compared
to the marginal generation time of the underlying uniform random number generator. It is
automatically disabled when the CDF at the mode is given. (Then there is no necessity to
use the mirror principle. However disabling is only done during the initialization step but
not at a re-initialization step.)
Default is FALSE.

[–]int unur srou set verify (UNUR_PAR* parameters, int verify)
[–]int unur srou chg verify (UNUR_GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the condition squeeze(x) <= PDF(x) <=
hat(x) is violated for some x then unur_errno is set to UNUR_ERR_GEN_CONDITION. However
notice that this might happen due to round-off errors for a few values of x (less than 1%).
Default is FALSE.

[–]int unur srou chg pdfparams (UNUR_GEN* generator, double* params, int
n_params)

Change array of parameters of the distribution in a given generator object.
For standard distributions from the UNURAN library the parameters are checked. It these
are invalid, then an error code is returned. Moreover the domain is updated automatically
unless it has been changed before by a unur_distr_discr_set_domain call. Notice that
optional parameters are (re-)set to their default values if not given for UNURAN standard
distributions.
For other distributions params is simply copied into to distribution object. It is only checked
that n params does not exceed the maximum number of parameters allowed. Then an error
code is returned and unur_errno is set to UNUR_ERR_DISTR_NPARAMS.

[–]int unur srou chg domain (UNUR_GEN* generator, double left, double
right)

Change left and right border of the domain of the (truncated) distribution. If the mode
changes when the domain of the (truncated) distribution is changed, then a correspondig
unur_srou_chg_mode is required. (There is no checking whether the domain is set or not as
in the unur_init call.)

[–]int unur srou chg mode (UNUR_GEN* generator, double mode)
Change mode of distribution. unur_srou_reinit must be executed before sampling from
the generator again.

[–]int unur srou upd mode (UNUR_GEN* generator)
Recompute the mode of the distribution. See unur_distr_cont_upd_mode for more details.
unur_srou_reinit must be executed before sampling from the generator again.

[–]int unur srou chg cdfatmode (UNUR_GEN* generator, double Fmode)
Change CDF at mode of distribution. unur_srou_reinit must be executed before sampling
from the generator again.

[–]int unur srou chg pdfatmode (UNUR_GEN* generator, double fmode)
Change PDF at mode of distribution. unur_srou_reinit must be executed before sampling
from the generator again.

Chapter 5: Methods for generating non-uniform random variates 83

[–]int unur srou chg pdfarea (UNUR_GEN* generator, double area)
Change area below PDF of distribution. unur_srou_reinit must be executed before sam-
pling from the generator again.

[–]int unur srou upd pdfarea (UNUR_GEN* generator)
Recompute the area below the PDF of the distribution. It only works when a distribution
objects from the UNURAN library of standard distributions is used (see Chapter 7 [Standard
distributions], page 121). Otherwise unur_errno is set to UNUR_ERR_DISTR_DATA. unur_
srou_reinit must be executed before sampling from the generator again.

5.3.10 SSR – Simple Setup Rejection

Required: T-concave PDF, mode, area

Speed: Set-up: fast, Sampling: slow

reference: [LJa01]

SSR is an acceptance/rejection method that uses universal inequalities for constructing (uni-
versal) hats and squeezes. It works for all T-concave distributions with T(x) = -1/sqrt(x).

It requires the PDF, the (exact) location of the mode and the area below the given PDF.
The rejection constant is 4 for all T-concave distributions with unbounded domain and is less
than 4 when the domain is bounded. Optionally the CDF at the mode can be given to increase
the performance of the algorithm by means of the unur_ssr_set_cdfatmode call. Then the
rejection constant is reduced by one half and even a universal squeeze can (but need not be)
used. However using squeezes is not recommended unless the evaluation of the PDF is rather
expensive. (The mirror principle is not implemented.)

If the exact location of the mode is not known, then use the approximate location and provide
the (exact) value of the PDF at the mode by means of the unur_ssr_set_pdfatmode call. But
then unur_ssr_set_cdfatmode must not be used. Notice if no mode is given at all, a (slow)
numerical mode finder will be used.

If the (exact) area below the PDF is not known, then an upper bound can be used instead
(which of course increases the rejection constant). But then the squeeze flag must not be set
and unur_ssr_set_cdfatmode must not be used.

It is even possible to give an upper bound for the PDF only. However then the (upper bound
for the) area below the PDF has to be multiplied by the ratio between the upper bound and the
lower bound of the PDF at the mode. Again setting the squeeze flag and using unur_ssr_set_
cdfatmode is not allowed.

It is possible to change the parameters and the domain of the chosen distribution without
building a new generator object using the unur_ssr_chg_pdfparams and unur_ssr_chg_domain
call, respectively. But then unur_ssr_chg_pdfarea, unur_ssr_chg_mode and unur_ssr_chg_
cdfatmode have to be used to reset the corresponding figures whenever they have changed.
If the PDF at the mode has been provided by a unur_ssr_set_pdfatmode call, additionally
unur_ssr_chg_pdfatmode must be used (otherwise this call is not necessary since then this
figure is computed directly from the PDF). If any of mode, PDF or CDF at the mode, or the
area below the mode has been changed, then unur_ssr_reinit must be executed. (Otherwise
the generator produces garbage).

There exists a test mode that verifies whether the conditions for the method are satisfied
or not while sampling. It can be switched on by calling unur_ssr_set_verify and unur_ssr_
chg_verify, respectively. Notice however that sampling is (a little bit) slower then.

84 UNURAN User Manual

Function reference

[–]UNUR_PAR* unur ssr new (const UNUR_DISTR* distribution)
Get default parameters for generator.

[–]int unur ssr reinit (UNUR_GEN* generator)
Update an existing generator object after the distribution has been modified. It must be
executed whenever the parameters or the domain of the distributions has been changed (see
below). It is faster than destroying the existing object and build a new one from scratch.
If reinitialization has been successful UNUR_SUCCESS is returned, in case of a failure an error
code is returned.

[–]int unur ssr set cdfatmode (UNUR_PAR* parameters, double Fmode)
Set CDF at mode. When set, the performance of the algorithm is increased by factor 2.
However, when the parameters of the distribution are changed unur_ssr_chg_cdfatmode
has to be used to update this value.
Default: not set.

[–]int unur ssr set pdfatmode (UNUR_PAR* parameters, double fmode)
Set pdf at mode. When set, the PDF at the mode is never changed. This is to avoid additional
computations, when the PDF does not change when parameters of the distributions vary. It
is only useful when the PDF at the mode does not change with changing parameters for the
distribution.
Default: not set.

[–]int unur ssr set usesqueeze (UNUR_PAR* parameters, int usesqueeze)
Set flag for using universal squeeze (default: off). Using squeezes is only useful when the
evaluation of the PDF is (extremely) expensive. Using squeezes is automatically disabled
when the CDF at the mode is not given (then no universal squeezes exist).
Default is FALSE.

[–]int unur ssr set verify (UNUR_PAR* parameters, int verify)
[–]int unur ssr chg verify (UNUR_GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the condition squeeze(x) <= PDF(x) <=
hat(x) is violated for some x then unur_errno is set to UNUR_ERR_GEN_CONDITION. However
notice that this might happen due to round-off errors for a few values of x (less than 1%).
Default is FALSE.

[–]int unur ssr chg pdfparams (UNUR_GEN* generator, double* params, int
n_params)

Change array of parameters of the distribution in a given generator object.
For standard distributions from the UNURAN library the parameters are checked. It these
are invalid, then an error code is returned. Moreover the domain is updated automatically
unless it has been changed before by a unur_distr_discr_set_domain call. Notice that
optional parameters are (re-)set to their default values if not given for UNURAN standard
distributions.
For other distributions params is simply copied into to distribution object. It is only checked
that n params does not exceed the maximum number of parameters allowed. Then an error
code is returned and unur_errno is set to UNUR_ERR_DISTR_NPARAMS.

Chapter 5: Methods for generating non-uniform random variates 85

[–]int unur ssr chg domain (UNUR_GEN* generator, double left, double right)
Change left and right border of the domain of the distribution. If the mode changes when the
domain of the distribution is changed, then a correspondig unur_ssr_chg_mode is required.
(There is no domain checking as in the unur_init call.)

[–]int unur ssr chg mode (UNUR_GEN* generator, double mode)
Change mode of distribution. unur_ssr_reinit must be executed before sampling from the
generator again.

[–]int unur ssr upd mode (UNUR_GEN* generator)
Recompute the mode of the distribution. See unur_distr_cont_upd_mode for more details.
unur_srou_reinit must be executed before sampling from the generator again.

[–]int unur ssr chg cdfatmode (UNUR_GEN* generator, double Fmode)
Change CDF at mode of distribution. unur_ssr_reinit must be executed before sampling
from the generator again.

[–]int unur ssr chg pdfatmode (UNUR_GEN* generator, double fmode)
Change PDF at mode of distribution. unur_ssr_reinit must be executed before sampling
from the generator again.

[–]int unur ssr chg pdfarea (UNUR_GEN* generator, double area)
Change area below PDF of distribution. unur_ssr_reinit must be executed before sampling
from the generator again.

[–]int unur ssr upd pdfarea (UNUR_GEN* generator)
Recompute the area below the PDF of the distribution. It only works when a distribution
objects from the UNURAN library of standard distributions is used (see Chapter 7 [Standard
distributions], page 121). Otherwise unur_errno is set to UNUR_ERR_DISTR_DATA. unur_
srou_reinit must be executed before sampling from the generator again.

5.3.11 TABL – a TABLe method with piecewise constant hats

Required: PDF, all local extrema, cut-off values for the tails

Optional: approximate area

Speed: Set-up: (very) slow, Sampling: fast

reference: [AJa93] [AJa95] [HLD04: Cha5.1]

TABL (called Ahrens method in [HLD04]) is an acceptance/rejection method (see [ARVRej])
that uses a decomposition of the domain of the distribution into many short subintervals. Inside
of these subintervals constant hat and squeeze functions are utilized. Thus it is easy to use the
idea of immediate acceptance (see [ARVRej]) for points below the squeeze. This reduces the
expected number of uniform random numbers per generated random variate to less than two.
Using a large number of subintervals only little more than one random number is necessary on
average. Thus this method becomes very fast.

Due to the constant hat function this method only works for distributions with bounded
domains. Thus for unbounded domains the left and right tails have to be cut off. This is no
problem when the probability of falling into these tail regions is beyond computational relevance
(e.g. smaller than 1.e-12).

86 UNURAN User Manual

For easy construction of hat and squeeze functions it is necessary to know the regions of
monotonicity (called slopes) or equivalently all local maxima and minima of the density. The
main problem for this method in the setup is the choice of the subintervals. A simple and close
to optimal approach is the "equal area rule" [Book,Cha5.1]. There the subintervals are selected
such that the area below the hat is the same for each subinterval which can be realized with a
simple recursion. If more subintervals are necessary it is possible to split either randomly chosen
intervals (adaptive rejection sampling, ARS) or those intervals, where the ratio between squeeze
and hat is smallest. This version of the setup is called derandomized ARS (DARS). With the
default settings TABL is first calculating approximately 30 subintervals with the equal area rule.
Then DARS is used till the desired fit of the hat is reached.

A convenient measure to control the quality of the fit of hat and squeeze is the ratio (area
below squeeze)/(area below hat) called "sqhratio" which must be smaller or equal to one. The
expected number of iterations in the rejection algorithm is known to be smaller than 1/sqhratio
and the expected number of evaluations of the density is bounded by 1/sqhratio - 1. So values
of the sqhratio close to one (e.g. 0.95 or 0.99) lead to many subintervals. Thus a better fitting
hat is constructed and the sampling algorithm becomes fast; on the other hand large tables
are needed and the setup is very slow. For moderate values of sqhratio (e.g. 0.9 or 0.8) the
sampling is slower but the required tables are smaller and the setup is not so slow.

It follows from the above explanations that TABL is always requiring a slow setup and that
it is not very well suited for heavy-tailed distributions.

How To Use

For using the TABL method UNURAN needs a bounded interval to which the generated
variates can be restricted and information about all local extrema of the distribution. For
unimodal densities is is sufficient to provide the mode of the distribution. For the case of
a built-in unimodal distribution with bounded domain all these information is present in the
distribution object and thus no extra input is necessary (see example TABL1 below).

For a built-in unimodal distribution with unbounded domain we should specify the cut-off val-
ues for the tails. This can be done with the unur_tabl_set_boundary call (see example TABL2
below). For the case that we do not set these boundaries the default values of +/- 1.e20 are
used. We can see in example TABL1 that this still works fine for many standard distributions.

For the case of a multimodal distribution we have to set the regions of monotonicity (called
slopes) explicitly using the unur_tabl_set_slopes command (see example TABL3 below).

To controll the fit of the hat and the size of the tables and thus the speed of the setup and
the sampling it is most convenient to use the unur_tabl_set_max_sqhratio call. The default
is 0.9 which is a sensible value for most distributions and applications. If very large samples
of a distribution are required or the evaluation of a density is very slow it may be useful to
increase the sqhratio to eg. 0.95 or even 0.99. With the unur_tabl_get_sqhratio call we can
check which sqhratio was really reached. If that value is below the desired value it is necessary
to increase the maximal number of subintervals, which defaults to 1000, using the unur_tabl_
set_max_intervals call. The unur_tabl_get_n_intervals call can be used to find out the
number of subintervals the setup calculated.

The usage of the commands mentioned here are demonstrated in example TABL1, exam-
ple TABL2 and example TABL3 below.

Function reference

[–]UNUR_PAR* unur tabl new (const UNUR_DISTR* distribution)
Get default parameters for generator.

Chapter 5: Methods for generating non-uniform random variates 87

[–]int unur tabl set usedars (UNUR_PAR* parameters, int usedars)
If usedars is set to TRUE, “derandomized adaptive rejection sampling” (DARS) is used in the
setup. Intervals, where the area between hat and squeeze is too large compared to the average
area between hat and squeeze over all intervals, are split. This procedure is repeated until the
ratio between squeeze and hat exceeds the bound given by unur_tabl_set_max_sqhratio
call or the maximum number of intervals is reached. Moreover, it also aborts when no more
intervals can be found for splitting.
For finding splitting points the arc-mean rule (a mixture of arithmetic mean and harmonic
mean) is used.
Default is TRUE.

[–]int unur tabl set darsfactor (UNUR_PAR* parameters, double factor)
Set factor for “derandomized adaptive rejection sampling”. This factor is used to determine
the segments that are “too large”, that is, all segments where the area between squeeze and
hat is larger than factor times the average area over all intervals between squeeze and hat.
Notice that all segments are split when factor is set to 0., and that there is no splitting at
all when factor is set to UNUR_INFINITY.
Default is 0.99. There is no need to change this parameter.

[–]int unur tabl set variant splitmode (UNUR_PAR* parameters, unsigned
splitmode)

There are three variants for adaptive rejection sampling. These differ in the way how an
interval is split:

splitmode 1
use the generated point to split the interval.

splitmode 2
use the mean point of the interval.

splitmode 3
use the arcmean point; suggested for distributions with heavy tails.

Default is splitmode 2.

[–]int unur tabl set max sqhratio (UNUR_PAR* parameters, double max_ratio)
Set upper bound for the ratio (area below squeeze) / (area below hat). It must be a number
between 0 and 1. When the ratio exceeds the given number no further construction points
are inserted via DARS in the setup.
For the case of ARS (set usedars() must be set to FALSE): Use 0 if no construction points
should be added after the setup. Use 1 if added new construction points should not be
stopped until the maximum number of construction points is reached. If max ratio is close
to one, many construction points are used.
Default is 0.9.

[–]double unur tabl get sqhratio (const UNUR_GEN* generator)
Get the current ratio (area below squeeze) / (area below hat) for the generator. (In case of
an error UNUR_INFINITY is returned.)

[–]double unur tabl get hatarea (const UNUR_GEN* generator)
Get the area below the hat for the generator. (In case of an error UNUR_INFINITY is returned.)

88 UNURAN User Manual

[–]double unur tabl get squeezearea (const UNUR_GEN* generator)
Get the area below the squeeze for the generator. (In case of an error UNUR_INFINITY is
returned.)

[–]int unur tabl set max intervals (UNUR_PAR* parameters, int max_ivs)
Set maximum number of intervals. No construction points are added in or after the setup
when the number of intervals suceeds max ivs.
Default is 1000.

[–]int unur tabl get n intervals (const UNUR_GEN* generator)
Get the current number of intervals. (In case of an error 0 is returned.)

[–]int unur tabl set areafraction (UNUR_PAR* parameters, double fraction)
Set parameter for equal area rule. During the setup a piecewise constant hat is constructed,
such that the area below each of these pieces (strips) is the same and equal to the (given)
area below the distribution times fraction (which must be greater than zero).
Important: It the area below the PDF is not set, then 1 is assumed.
Default is 0.1.

[–]int unur tabl set nstp (UNUR_PAR* parameters, int n_stp)
Set number of construction points for the hat function. n stp must be greater than zero.
After the setup there are about n stp construction points. However it might be larger when
a small fraction is given by the unur_tabl_set_areafraction call. It also might be smaller
for some variants.
Default is 30.

[–]int unur tabl set slopes (UNUR_PAR* parameters, const double* slopes, int
n_slopes)

Set slopes for the PDF. A slope <a,b> is an interval [a,b] or [b,a] where the PDF is monotone
and PDF(a) >= PDF(b). The list of slopes is given by an array slopes where each consecutive
tuple (i.e. (slopes[0], slopes[1]), (slopes[2], slopes[3]), etc.) defines one slope.
Slopes must be sorted (i.e. both slopes[0] and slopes[1] must not be greater than any
entry of the slope (slopes[2], slopes[3]), etc.) and must not be overlapping. Otherwise
no slopes are set and unur errno is set to UNUR_ERR_PAR_SET.
Notice: n slopes is the number of slopes (and not the length of the array slopes).
Notice that setting slopes resets the given domain for the distribution. However in case of a
standard distribution the area below the PDF is not updated.

[–]int unur tabl set guidefactor (UNUR_PAR* parameters, double factor)
Set factor for relative size of the guide table for indexed search (see also method DGT
Section 5.7.3 [DGT], page 111). It must be greater than or equal to 0. When set to 0, then
sequential search is used.
Default is 1.

[–]int unur tabl set boundary (UNUR_PAR* parameters, double left, double
right)

Set the left and right boundary of the computation interval. The piecewise hat is only
constructed inside this interval. The probability outside of this region must not be of com-
putational relevance. Of course +/- UNUR_INFINITY is not allowed.
Default is -1.e20,1.e20.

Chapter 5: Methods for generating non-uniform random variates 89

[–]int unur tabl set verify (UNUR_PAR* parameters, int verify)
[–]int unur tabl chg verify (UNUR_GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the condition squeeze(x) <= PDF(x) <=
hat(x) is violated for some x then unur_errno is set to UNUR_ERR_GEN_CONDITION. However
notice that this might happen due to round-off errors for a few values of x (less than 1%).
Default is FALSE.

5.3.12 TDR – Transformed Density Rejection

Required: T-concave PDF, dPDF

Optional: mode

Speed: Set-up: slow, Sampling: fast

reference: [GWa92] [HWa95]

TDR is an acceptance/rejection method that uses the concavity of a transformed density to
construct hat function and squeezes automatically. Such PDFs are called T-concave. Currently
the following transformations are implemented and can be selected by setting their c-values by
a unur_tdr_set_c call:

c = 0 T(x) = log(x)

c = -0.5 T(x) = -1/sqrt(x) (Default)

In future releases the transformations T(x) = -(x)^c will be available for any c with 0 > c >
-1. Notice that if a PDF is T-concave for a c then it also T-concave for every c’<c. However
the performance decreases when c’ is smaller than c. For computational reasons we suggest the
usage of c = -0.5 (this is the default). For c <= -1 the hat is not bounded any more if the
domain of the PDF is unbounded. But in the case of a bounded domain using method TABL is
preferred to a TDR with c < -1 (except in a few special cases).

We offer three variants of the algorithm.

GW squeezes between construction points

PS squeezes proportional to hat function (Default)

IA same as variant PS but uses a compositon method with “immediate acceptance” in
the region below the squeeze.

GW has a slightly faster setup but higher marginal generation times. PS is faster than GW. IA
uses less uniform random numbers and is therefore faster than PS.

It is also possible to evaluate the inverse of the CDF of the hat distribution directly using
the unur_tdr_eval_invcdfhat call.

There are lots of parameters for these methods, see below.
It is possible to use this method for correlation induction by setting an auxiliary uniform

random number generator via the unur_set_urng_aux call. (Notice that this must be done
after a possible unur_set_urng call.) When an auxiliary generator is used then the number of
uniform random numbers from the first URNG that are used for one generated random variate
is constant and given in the following table:

GW ... 2

PS ... 2

IA ... 1

90 UNURAN User Manual

There exists a test mode that verifies whether the conditions for the method are satisfied
or not. It can be switched on by calling unur_tdr_set_verify and unur_tdr_chg_verify,
respectively. Notice however that sampling is (much) slower then.

For densities with modes not close to 0 it is suggested either to set the mode of the distribution
or to use the unur_tdr_set_center call for provide some information about the main part of
the PDF to avoid numerical problems.

It is possible to use this method for generating from truncated distributions. It even can be
changed for an existing generator object by an unur_tdr_chg_truncated call.

Important: The ratio between the area below the hat and the area below the squeeze changes
when the sampling region is restricted. Especially it becomes (very) small when sampling from
the (far) tail of the distribution. Then it is better to create a new generator object for the tail
of the distribution only.

Function reference

[–]UNUR_PAR* unur tdr new (const UNUR_DISTR* distribution)
Get default parameters for generator.

[–]int unur tdr set c (UNUR_PAR* parameters, double c)
Set parameter c for transformation T. Currently only values between 0 and -0.5 are allowed.
If c is between 0 and -0.5 it is set to -0.5.

Default is -0.5.

[–]int unur tdr set variant gw (UNUR_PAR* parameters)
Use original version with squeezes between construction points as proposed by Gilks & Wild
(1992).

[–]int unur tdr set variant ps (UNUR_PAR* parameters)
Use squeezes proportional to the hat function. This is faster than the original version. This
is the default.

[–]int unur tdr set variant ia (UNUR_PAR* parameters)
Use squeezes proportional to the hat function together with a composition method that
required less uniform random numbers.

[–]int unur tdr set usedars (UNUR_PAR* parameters, int usedars)
If usedars is set to TRUE, “derandomized adaptive rejection sampling” (DARS) is used in
setup. Intervals where the area between hat and squeeze is too large compared to the average
area between hat and squeeze over all intervals are split. This procedure is repeated until
the ratio between area below squeeze and area below hat exceeds the bound given by unur_
tdr_set_max_sqhratio call or the maximum number of intervals is reached. Moreover, it
also aborts when no more intervals can be found for splitting.

For finding splitting points the following rules are used (in this order, i.e., is if the first rule
cannot be applied, the next one is used):

1. Use the expected value of adaptive rejection sampling.
2. Use the arc-mean rule (a mixture of arithmetic mean and harmonic mean).
3. Use the arithmetic mean of the interval boundaries.

Chapter 5: Methods for generating non-uniform random variates 91

Notice, however, that for unbounded intervals neither rule 1 nor rule 3 can be used.
As an additional feature, it is possible to choose amoung these rules. If usedars is set to 1
or TRUE the expected point (rule 1) is used (it switches to rule 2 for a particular interval if
rule 1 cannot be applied). If it is set to 2 the arc-mean rule is used. If it is set to 3 the mean
is used. Notice that rule 3 can only be used if the domain of the distribution is bounded. It
is faster than the other two methods but for heavy-tailed distribution and large domain the
hat converges extremely slowly.
The default depends on the given construction points. If the user has provided such points
via a unur_tdr_set_cpoints call, then usedars is set to FALSE by default, i.e., there is no
further splitting. If the user has only given the number of construction points (or only uses
the default number), then usedars is set to TRUE (i.e., use rule 1).

[–]int unur tdr set darsfactor (UNUR_PAR* parameters, double factor)
Set factor for “derandomized adaptive rejection sampling”. This factor is used to determine
the intervals that are “too large”, that is, all intervals where the area between squeeze and
hat is larger than factor times the average area over all intervals between squeeze and hat.
Notice that all intervals are split when factor is set to 0., and that there is no splitting at
all when factor is set to UNUR_INFINITY.
Default is 0.99. There is no need to change this parameter.

[–]int unur tdr chg truncated (UNUR_GEN* gen, double left, double right)
Change the borders of the domain of the (truncated) distribution.
Notice that the given truncated domain must be a subset of the domain of the given distri-
bution. The generator always uses the intersection of the domain of the distribution and the
truncated domain given by this call. The hat function will not be changed.
Important: The ratio between the area below the hat and the area below the squeeze changes
when the sampling region is restricted. Especially it becomes (very) small when sampling
from the (far) tail of the distribution. Then it is better to create a generator object for the
tail of distribution only.
Important: This call does not work for variant IA (immediate acceptance). In this case
UNURAN switches automatically to variant PS.
Important: It is not a good idea to use adaptave rejection sampling while sampling from a
domain that is a strict subset of the domain that has been used to construct the hat. For
that reason adaptive adding of construction points is automatically disabled by this call.
Important: If the CDF of the hat is (almost) the same for left and right and (almost) equal
to 0 or 1, then the truncated domain is not chanced and the call returns an error code.

[–]int unur tdr set max sqhratio (UNUR_PAR* parameters, double max_ratio)
Set upper bound for the ratio (area below squeeze) / (area below hat). It must be a number
between 0 and 1. When the ratio exceeds the given number no further construction points
are inserted via adaptive rejection sampling. Use 0 if no construction points should be added
after the setup. Use 1 if added new construction points should not be stopped until the
maximum number of construction points is reached.
Default is 0.99.

[–]double unur tdr get sqhratio (const UNUR_GEN* generator)
Get the current ratio (area below squeeze) / (area below hat) for the generator. (In case of
an error UNUR_INFINITY is returned.)

92 UNURAN User Manual

[–]double unur tdr get hatarea (const UNUR_GEN* generator)
Get the area below the hat for the generator. (In case of an error UNUR_INFINITY is returned.)

[–]double unur tdr get squeezearea (const UNUR_GEN* generator)
Get the area below the squeeze for the generator. (In case of an error UNUR_INFINITY is
returned.)

[–]int unur tdr is ARS running (const UNUR_GEN* generator)
Check whether more points will be added by adaptive rejection sampling. (Internal call)

[–]int unur tdr set max intervals (UNUR_PAR* parameters, int max_ivs)
Set maximum number of intervals. No construction points are added after the setup when
the number of intervals suceeds max ivs. It is increased automatically to twice the number
of construction points if this is larger.

Default is 100.

[–]int unur tdr set cpoints (UNUR_PAR* parameters, int n_stp, const double*

stp)
Set construction points for the hat function. If stp is NULL than a heuristic rule of thumb is
used to get n stp construction points. This is the default behavior.

The default number of construction points is 30.

[–]int unur tdr set center (UNUR_PAR* parameters, double center)
Set the center (approximate mode) of the PDF. It is used to find construction points by
means of a heuristical rule of thumb. If the mode is given the center is set equal to the mode.

It is suggested to use this call to provide some information about the main part of the PDF
to avoid numerical problems.

By default the mode is used as center if available. Otherwise 0 is used.

[–]int unur tdr set usecenter (UNUR_PAR* parameters, int usecenter)
Use the center as construction point. Default is TRUE.

[–]int unur tdr set usemode (UNUR_PAR* parameters, int usemode)
Use the (exact!) mode as construction point. Notice that the behavior of the algorithm is
different to simply adding the mode in the list of construction points via a unur_tdr_set_
cpoints call. In the latter case the mode is treated just like any other point. However, when
usemode is TRUE, the tangent in the mode is always set to 0. Then the hat of the transformed
density can never cut the x-axis which must never happen if c < 0, since otherwise the hat
would not be bounded.

Default is TRUE.

[–]int unur tdr set guidefactor (UNUR_PAR* parameters, double factor)
Set factor for relative size of the guide table for indexed search (see also method DGT
Section 5.7.3 [DGT], page 111). It must be greater than or equal to 0. When set to 0, then
sequential search is used.

Default is 2.

Chapter 5: Methods for generating non-uniform random variates 93

[–]int unur tdr set verify (UNUR_PAR* parameters, int verify)
[–]int unur tdr chg verify (UNUR_GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the condition squeeze(x) <= PDF(x) <=
hat(x) is violated for some x then unur_errno is set to UNUR_ERR_GEN_CONDITION. However
notice that this might happen due to round-off errors for a few values of x (less than 1%).
Default is FALSE.

[–]int unur tdr set pedantic (UNUR_PAR* parameters, int pedantic)
Sometimes it might happen that unur_init has been executed successfully. But when ad-
ditional construction points are added by adaptive rejection sampling, the algorithm detects
that the PDF is not T-concave.
With pedantic being TRUE, the sampling routine is exchanged by a routine that simply returns
UNUR_INFINITY. Otherwise the new point is not added to the list of construction points. At
least the hat function remains T-concave.
Setting pedantic to FALSE allows sampling from a distribution which is “almost” T-concave
and small errors are tolerated. However it might happen that the hat function cannot be
improved significantly. When the hat functions that has been constructed by the unur_init
call is extremely large then it might happen that the generation times are extremely high
(even hours are possible in extremely rare cases).
Default is FALSE.

[–]double unur tdr eval invcdfhat (const UNUR_GEN* generator, double u,
double* hx, double* fx, double* sqx)

Evaluate the inverse of the CDF of the hat distribution at u. As a side effect the values of
the hat, the density, and the squeeze at the computed point x are stored in hx, fx, and sqx,
respectively. However, these computations are suppressed if the corresponding variable is set
to NULL.
If u is out of the domain [0,1] then unur_errno is set to UNUR_ERR_DOMAIN and the respective
bound of the domain of the distribution are returned (which is -UNUR_INFINITY or UNUR_
INFINITY in the case of unbounded domains).
Important: This call does not work for variant IA (immediate acceptance). In this case the
hat CDF is evaluated as if variant PS is used.
Notice: This function always evaluates the inverse CDF of the hat distribution. A call to
unur_tdr_chg_truncated call has no effect.

5.3.13 UTDR – Universal Transformed Density Rejection

Required: T-concave PDF, mode, approximate area

Speed: Set-up: moderate, Sampling: Moderate

reference: [HWa95]

UTDR is based on the transformed density rejection and uses three almost optimal points for
constructing hat and squeezes. It works for all T-concave distributions with T(x) = -1/sqrt(x).

It requires the PDF and the (exact) location of the mode. Notice that if no mode is given
at all, a (slow) numerical mode finder will be used. Moreover the approximate area below
the given PDF is used. (If no area is given for the distribution the algorithm assumes that
it is approximately 1.) The rejection constant is bounded from above by 4 for all T-concave
distributions.

94 UNURAN User Manual

It is possible to change the parameters and the domain of the chosen distribution without
building a new generator object by using the unur_utdr_chg_pdfparams and unur_utdr_chg_
domain call, respectively. But then unur_utdr_chg_mode and unur_utdr_chg_pdfarea have
to be used to reset the corresponding figures whenever these have changed. Before sampling
from the distribution again, unur_utdr_reinit must be executed. (Otherwise the generator
produces garbage).

When the PDF does not change at the mode for varying parameters, then this value can be
set with unur_utdr_set_pdfatmode to avoid some computations. Since this value will not be
updated any more when the parameters of the distribution are changed, the unur_utdr_chg_
pdfatmode call is necessary to do this manually.

There exists a test mode that verifies whether the conditions for the method are satisfied
or not. It can be switched on by calling unur_utdr_set_verify and unur_utdr_chg_verify,
respectively. Notice however that sampling is slower then.

Function reference

[–]UNUR_PAR* unur utdr new (const UNUR_DISTR* distribution)
Get default parameters for generator.

[–]int unur utdr reinit (UNUR_GEN* generator)
Update an existing generator object after the distribution has been modified. It must be
executed whenever the parameters or the domain of the distributions has been changed (see
below). It is faster than destroying the existing object and building a new one from scratch.
If reinitialization has been successful UNUR_SUCCESS is returned, in case of a failure an error
code is returned.

Important: Do not use the generator object for sampling after a failed reinit, since otherwise
it may produce garbage.

[–]int unur utdr set pdfatmode (UNUR_PAR* parameters, double fmode)
Set pdf at mode. When set, the PDF at the mode is never changed. This is to avoid additional
computations, when the PDF does not change when parameters of the distributions vary. It
is only useful when the PDF at the mode does not change with changing parameters for the
distribution.

Default: not set.

[–]int unur utdr set cpfactor (UNUR_PAR* parameters, double cp_factor)
Set factor for position of left and right construction point. The cp factor is used to find
almost optimal construction points for the hat function. There is no need to change this
factor in almost all situations.

Default is 0.664.

[–]int unur utdr set deltafactor (UNUR_PAR* parameters, double delta)
Set factor for replacing tangents by secants. higher factors increase the rejection constant but
reduces the risk of serious round-off errors. There is no need to change this factor it almost
all situations.

Default is 1.e-5.

Chapter 5: Methods for generating non-uniform random variates 95

[–]int unur utdr set verify (UNUR_PAR* parameters, int verify)
[–]int unur utdr chg verify (UNUR_GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the condition squeeze(x) <= PDF(x) <=
hat(x) is violated for some x then unur_errno is set to UNUR_ERR_GEN_CONDITION. However
notice that this might happen due to round-off errors for a few values of x (less than 1%).

Default is FALSE.

[–]int unur utdr chg pdfparams (UNUR_GEN* generator, double* params, int
n_params)

Change array of parameters of the distribution in a given generator object.

For standard distributions from the UNURAN library the parameters are checked. It these
are invalid, then an error code is returned. Moreover the domain is updated automatically
unless it has been changed before by a unur_distr_discr_set_domain call. Notice that
optional parameters are (re-)set to their default values if not given for UNURAN standard
distributions.

For other distributions params is simply copied into to distribution object. It is only checked
that n params does not exceed the maximum number of parameters allowed. Then an error
code is returned and unur_errno is set to UNUR_ERR_DISTR_NPARAMS.

[–]int unur utdr chg domain (UNUR_GEN* generator, double left, double
right)

Change left and right border of the domain of the (truncated) distribution. If the mode
changes when the domain of the (truncated) distribution is changed, then a correspondig
unur_utdr_chg_mode is required. (There is no domain checking as in the unur_init call.)

[–]int unur utdr chg mode (UNUR_GEN* generator, double mode)
Change mode of distribution. unur_utdr_reinit must be executed before sampling from
the generator again.

[–]int unur utdr upd mode (UNUR_GEN* generator)
Recompute the mode of the distribution. See unur_distr_cont_upd_mode for more details.
unur_srou_reinit must be executed before sampling from the generator again.

[–]int unur utdr chg pdfatmode (UNUR_GEN* generator, double fmode)
Change PDF at mode of distribution. unur_utdr_reinit must be executed before sampling
from the generator again.

[–]int unur utdr chg pdfarea (UNUR_GEN* generator, double area)
Change area below PDF of distribution. unur_utdr_reinit must be executed before sam-
pling from the generator again.

[–]int unur utdr upd pdfarea (UNUR_GEN* generator)
Recompute the area below the PDF of the distribution. It only works when a distribution
objects from the UNURAN library of standard distributions is used (see Chapter 7 [Standard
distributions], page 121). Otherwise unur_errno is set to UNUR_ERR_DISTR_DATA. unur_
srou_reinit must be executed before sampling from the generator again.

96 UNURAN User Manual

5.4 Methods for continuous empirical univariate distributions

Overview of methods

� �
Methods for continuous empirical univariate distributions
sample with unur_sample_cont

EMPK: Requires an observed sample. EMPL: Requires an observed sample.
 	
Example

/* --- */

/* File: example_emp.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* Example how to sample from an empirial continuous univariate */

/* distribution. */

/* --- */

int main()

{

int i;

double x;

/* data points */

double data[15] = { -0.1, 0.05, -0.5, 0.08, 0.13,\

-0.21,-0.44, -0.43, -0.33, -0.3, \

0.18, 0.2, -0.37, -0.29, -0.9 };

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen; /* generator object */

/* Create a distribution object and set empirical sample. */

distr = unur_distr_cemp_new();

unur_distr_cemp_set_data(distr, data, 15);

/* Choose a method: EMPK. */

par = unur_empk_new(distr);

/* Set smooting factor. */

unur_empk_set_smoothing(par, 0.8);

/* Create the generator object. */

gen = unur_init(par);

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

Chapter 5: Methods for generating non-uniform random variates 97

}

/* It is possible to reuse the distribution object to create */

/* another generator object. If you do not need it any more, */

/* it should be destroyed to free memory. */

unur_distr_free(distr);

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

Example (String API)

/* --- */

/* File: example_emp_str.c */

/* --- */

/* String API. */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* Example how to sample from an empirial continuous univariate */

/* distribution. */

/* --- */

int main()

{

int i;

double x;

/* Declare UNURAN generator object. */

UNUR_GEN *gen; /* generator object */

/* Create the generator object. */

gen = unur_str2gen("distr = cemp; \

data=(-0.10, 0.05,-0.50, 0.08, 0.13, \

-0.21,-0.44,-0.43,-0.33,-0.30, \

0.18, 0.20,-0.37,-0.29,-0.90) & \

method=empk; smoothing=0.8");

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

98 UNURAN User Manual

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

x = unur_sample_cont(gen);

printf("%f\n",x);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

5.4.1 EMPK – EMPirical distribution with Kernel smoothing

Required: observed sample

Speed: Set-up: slow (as sample is sorted), Sampling: fast (depends on kernel)

reference: [HLa00]

EMPK generates random variates from an empirical distribution that is given by an observed
sample. The idea is that simply choosing a random point from the sample and to return it with
some added noise results in a method that has very nice properties, as it can be seen as sampling
from a kernel density estimate. If the underlying distribution is continuous, especially the fine
structur of the resulting empirical distribution is much better than using only resampling without
noise.

Clearly we have to decide about the density of the noise (called kernel) and about the standard
deviation of the noise. The mathematical theory of kernel density estimation shows us that we
are comparatively free in choosing the kernel. It also supplies us with a simple formula to
compute the optimal standarddeviation of the noise, called bandwidth (or window width) of the
kernel.

For most applications it is perfectly ok to use the default values offered. Unless you have
some knowledge on density estimation we do not recommend to change anything. There are two
exceptions:
A. In the case that the unknown underlying distribution is not continuous but discrete you

should "turn off" the adding of the noise by setting:
unur_empk_set_smoothing(par, 0.)

B. In the case that you are especially interested in a fast sampling algorithm use the call
unur_empk_set_kernel(par, UNUR_DISTR_BOXCAR);

to change the used noise distribution from the default Gaussian distribution to the uniform
distribution. For other possible kernels see unur_empk_set_kernel and unur_empk_set_
kernelgen below.

All other parameters are only useful for people knowing the theory of kernel density es-
timation. It is not necessary to change them if the true underlying distribution is somehow
comparable with a bell-shaped curve, even skewed or with some not too sharp extra peaks. In
all these cases the simple robust reference method implemented to find a good standard devia-
tion of the noise (i.e. the bandwidth of kernel density estimation) should give sensible results.
However, it might be necessary to overwrite this automatic method to find the bandwidth eg.
when resampling from data with two or more sharp distinct peaks. Then the distribution has

Chapter 5: Methods for generating non-uniform random variates 99

nearly discrete components as well and our automatic method may easily choose too large a
bandwidth which results in an empirical distribution which is oversmoothed (i.e. it has lower
peaks than the original distribution). Then it is recommended to decrease the bandwidth using
the unur_empk_set_smoothing call. A smoothing factor of 1 is the default. A smoothing factor
of 0 leads to naive resampling of the data. Thus an appropriate value between these extremes
should be choosen. We recommend to consult a reference on kernel smoothing when doing so;
but it is not a simple problem to determine an optimal bandwidth for distributions with sharp
peaks.

Function reference

[–]UNUR_PAR* unur empk new (const UNUR_DISTR* distribution)
Get default parameters for generator.

[–]int unur empk set kernel (UNUR_PAR* parameters, unsigned kernel)
Select one of the supported kernel distributions. Currently the following kernels are sup-
ported:

UNUR_DISTR_GAUSSIAN
Gaussian (normal) kernel

UNUR_DISTR_EPANECHNIKOV
Epanechnikov kernel

UNUR_DISTR_BOXCAR
Boxcar (uniform, rectangular) kernel

UNUR_DISTR_STUDENT
t3 kernel (Student’s distribution with 3 degrees of freedom)

UNUR_DISTR_LOGISTIC
logistic kernel

For other kernels (including kernels with Student’s distribution with other than 3 degrees of
freedom) use the unur_empk_set_kernelgen call.
It is not possible to call unur_empk_set_kernel twice.
Default is the Gaussian kernel.

[–]int unur empk set kernelgen (UNUR_PAR* parameters, const UNUR_GEN*

kernelgen, double alpha, double kernelvar)
Set generator for the kernel used for density estimation.
alpha is used to compute the optimal bandwidth from the point of view of minimizing the
mean integrated square error (MISE). It depends on the kernel K and is given by

alpha(K) = Var(K)^(-2/5){ \int K(t)^2 dt}^(1/5)

For standard kernels (see above) alpha is computed by the algorithm.
kernvar is the variance of the used kernel. It is only required for the variance corrected
version of density estimation (which is used by default); otherwise it is ignored. If kernelvar
is nonpositive, variance correction is disabled. For standard kernels (see above) kernvar is
computed by the algorithm.
It is not possible to call unur_empk_set_kernelgen after a standard kernel has been selected
by a unur_empk_set_kernel call.
Notice that the uniform random number generator of the kernel generator is overwritten
during the unur_init call and at each unur_chg_urng call with the uniform generator used
for the empirical distribution.
Default is the Gaussian kernel.

100 UNURAN User Manual

[–]int unur empk set beta (UNUR_PAR* parameters, double beta)
beta is used to compute the optimal bandwidth from the point of view of minimizing the
mean integrated square error (MISE). beta depends on the (unknown) distribution of the
sampled data points. By default Gaussian distribution is assumed for the sample (beta =
1.3637439). There is no requirement to change beta.
Default: 1.3637439

[–]int unur empk set smoothing (UNUR_PAR* parameters, double smoothing)
[–]int unur empk chg smoothing (UNUR_GEN* generator, double smoothing)

Set and change the smoothing factor. The smoothing factor controlles how “smooth” the re-
sulting density estimation will be. A smoothing factor equal to 0 results in naive resampling.
A very large smoothing factor (together with the variance correction) results in a density
which is approximately equal to the kernel. Default is 1 which results in a smoothing param-
eter minimising the MISE (mean integrated squared error) if the data are not too far away
from normal. If a large smoothing factor is used, then variance correction must be switched
on.
Default: 1

[–]int unur empk set varcor (UNUR_PAR* parameters, int varcor)
[–]int unur empk chg varcor (UNUR_GEN* generator, int varcor)

Switch variance correction in generator on/off. If varcor is TRUE then the variance of the used
density estimation is the same as the sample variance. However this increases the MISE of
the estimation a little bit.
Default is FALSE.

[–]int unur empk set positive (UNUR_PAR* parameters, int positive)
If positive is TRUE then only nonnegative random variates are generated. This is done by
means of a mirroring technique.
Default is FALSE.

5.4.2 EMPL – EMPirical distribution with Linear interpolation

Required: observed sample

Speed: Set-up: slow (as sample is sorted), Sampling: very fast (inversion)

reference: [HLa00]

EMPL generates random variates from an empirical distribution that is given by an observed
sample. This is done by linear interpolation of the empirical CDF. Although this method is
suggested in the books of Law and Keltn (2000) and Bratly, Fox, and Schrage (1987) we do not
recommend this method at all since it has many theoretical drawbacks: The variance of empirical
distribution function does not coincide with the variance of the given sample. Moreover, when
the sample increases the empirical density function does not converge to the density of the
underlying random variate. Notice that the range of the generated point set is always given by
the range of the given sample.

This method is provided in UNURAN for the sake of completeness. We always recommend to
use method EMPK (see Section 5.4.1 [EMPirical distribution with Kernel smoothing], page 98).

If the data seem to be far away from having a bell shaped histogram, then we think that
naive resampling is still better than linear interpolation.
Important : Using this method is not recommended!

Chapter 5: Methods for generating non-uniform random variates 101

Function reference

[–]UNUR_PAR* unur empl new (const UNUR_DISTR* distribution)
Get default parameters for generator.

5.5 Methods for continuous multivariate distributions

Overview of methods

� �
Methods for continuous multivariate distributions
sample with unur_sample_vec

VMT: Requires the mean vector and the covariance matrix.
 	
5.5.1 VMT – Vector Matrix Transformation

Required: mean vector, covariance matrix, standardized marginal distributions

Speed: Set-up: slow, Sampling: depends on dimension

VMT generates random vectors for distributions with given mean vector mu and covariance
matrix Sigma. It produces random vectors of the form X = L Y + mu, where L is the Cholesky
factor of Sigma, i.e. L L^t = Sigma, and Y has independent components of the same distribution
with mean 0 and standard deviation 1.

The method VMT has been implemented especially to sample from a multinormal distribu-
tion. Nevertheless, it can also be used (or abused) for other distributions. However, notice that
the given standardized marginal distributions are not checked; i.e. if the given distributions do
not have mean 0 and variance 1 then mu and Sigma are not the mean vector and covariance
matrix, respectively, of the resulting distribution.

Important: Notice that except for the multinormal distribution the given marginal distri-
bution are distorted by the transformation using the Cholesky matrix. Thus for other (non-
multinormal) distributions this method should only be used when everything else fails and some
approximate results which might even be not entirely correct are better than no results.

Function reference

[–]UNUR_PAR* unur vmt new (const UNUR_DISTR* distribution)
Get parameters for generator.

5.5.2 VNROU – Multivariate Naive Ratio-Of-Uniforms method

Required: PDF

Optional: mode, center, bounding rectangle for acceptance region

Speed: Set-up: fast, Sampling: slow

reference: [WGS91]

102 UNURAN User Manual

VNROU is an implementation of the multivariate ratio-of-uniforms method which uses a
(minimal) bounding hyper-rectangle, see also Section A.4 [Ratio-of-Uniforms], page 148. It uses
an additional parameter r that can be used to adjust the algorithm to the given distribution to
improve performance and/or to make this method applicable. Moreover, this implementation
uses the center c of the distribution (which is set to the mode or mean by default, see unur_
distr_cvec_set_center for more details of its default values).

The minimal bounding has then the coordinates

v+ = sup
x

(f(x))1/rk+1,

u−i = inf
xi

(xi − ci) (f(x))r/rk+1,

u+
i = sup

xi

(xi − ci) (f(x))r/rk+1,

where xi is the i-th coordinate of point x ; ci is the i-th coordinate of the center c. These
bounds can either be given directly, or these are computed automatically by means of an nu-
merical routine by Hooke and Jeeves [HJa61] called direct search (see ‘src/utils/hooke.c’ for
further references and details). Of course this can fail, especially when this rectangle is not
bounded.

It is important to note that the algorithm works with PDF (x− center) instead of PDF (x)
, i.e. the bounding rectangle that have to be provided are for the PDF (x − center) . This is
important as otherwise the acceptance region can become a very long and skinny ellipsoid along
a diagonal of the (huge) bounding rectangle.

VNROU is based on the rejection method (see Section A.2 [Rejection], page 146). And it
is important to note that the acceptance probability decreases exponentially with dimension.
Thus even for moderately many dimensions (e.g. 5) the number of repetitions to get one random
vector can be prohibitively large and the algorithm seems to stay in an infinite loop.

How To Use

For using the VNROU method UNURAN needs the PDF of the distribution. Additionally
the parameter r can be set via a unur_vnrou_set_r call. Notice that the acceptance probability
increases when r is increased. On the other hand is is more unlikely that the bounding rectangle
does not exist if r is small.

The bounding rectangle can be given by the unur_vnrou_set_u and unur_vnrou_set_v calls.
If these are not called then the minimal bounding rectangle is computed automatically. Using
unur_vnrou_set_verify and unur_vnrou_chg_verify one can run the sampling algorithm in
a checking mode, i.e., in every cycle of the rejection loop it is checked whether the used rectangle
indeed enclosed the acceptance region of the distribution. When in doubt (e.g., when it is not
clear whether the numerical routine has worked correctly) this can be used to run a small Monte
Carlo study.

Chapter 5: Methods for generating non-uniform random variates 103

Function reference

[–]UNUR_PAR* unur vnrou new (const UNUR_DISTR* distribution)
Get default parameters for generator.

[–]int unur vnrou set u (UNUR_PAR* parameters, double* umin, double* umax)
Sets left and right boundaries of bounding hyper-rectangle. If no values are given, the bound-
ary of the minimal bounding hyper-rectangle is computed numerically.

Important: The boundaries are those of the density shifted by the center of the distribution.

Notice: Computing the minimal bounding rectangle may fail under some circumstances. In
particular for multimodal distributions this might fail.

Default: not set (i.e. computed automatically)

[–]int unur vnrou set v (UNUR_PAR* parameters, double vmax)
Set upper boundary for bounding hyper-rectangle. If no values are given, the density at the
mode is evaluated. If no mode is given for the distribution it is computed numercally (and
might fail).

Default: not set (i.e. computed automatically)

[–]int unur vnrou set r (UNUR_PAR* parameters, double r)
Sets the parameter r of the generalized multivariate ratio-of-uniforms method.

Notice: This parameter must satisfy r>0. Setting to a nonpositive value is ignored and in
this case the default value value is used instead.

Default: 1.

[–]int unur vnrou set verify (UNUR_PAR* parameters, int verify)
Turn verifying of algorithm while sampling on/off.

If the condition PDF(x) <= hat(x) is violated for some x then unur_errno is set to UNUR_
ERR_GEN_CONDITION. However notice that this might happen due to round-off errors for a
few values of x (less than 1%).

Default is FALSE.

[–]int unur vnrou chg verify (UNUR_GEN* generator, int verify)
Change the verifying of algorithm while sampling on/off.

5.6 Methods for continuous empirical multivariate distributions

Overview of methods

� �
Methods for continuous empirical multivariate distributions
sample with unur_sample_vec

VEMPK: Requires an observed sample.
 	

104 UNURAN User Manual

Example

/* --- */

/* File: example_vemp.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* Example how to sample from an empirial continuous */

/* multivariate distribution. */

/* --- */

int main()

{

int i;

/* 4 data points of dimension 2 */

double data[] = { 1. ,1., /* 1st data point */

-1.,1., /* 2nd data point */

1.,-1., /* 3rd data point */

-1.,-1. }; /* 4th data point */

double result[2];

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr; /* distribution object */

UNUR_PAR *par; /* parameter object */

UNUR_GEN *gen; /* generator object */

/* Create a distribution object with dimension 2. */

distr = unur_distr_cvemp_new(2);

/* Set empirical sample. */

unur_distr_cvemp_set_data(distr, data, 4);

/* Choose a method: VEMPK. */

par = unur_vempk_new(distr);

/* Use variance correction. */

unur_vempk_set_varcor(par, 1);

/* Create the generator object. */

gen = unur_init(par);

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* It is possible to reuse the distribution object to create */

/* another generator object. If you do not need it any more, */

/* it should be destroyed to free memory. */

unur_distr_free(distr);

/* Now you can use the generator object ‘gen’ to sample from */

/* the distribution. Eg.: */

for (i=0; i<10; i++) {

Chapter 5: Methods for generating non-uniform random variates 105

unur_sample_vec(gen, result);

printf("(%f,%f)\n", result[0], result[1]);

}

/* When you do not need the generator object any more, you */

/* can destroy it. */

unur_free(gen);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

Example (String API)

(not implemented)

5.6.1 VEMPK – (Vector) EMPirical distribution with Kernel
smoothing

Required: observed sample

Speed: Set-up: slow, Sampling: slow (depends on dimension)

reference: [HLa00]

VEMPK generates random variates from a multivariate empirical distribution that is given
by an observed sample. The idea is that simply choosing a random point from the sample and
to return it with some added noise results in a method that has very nice properties, as it can be
seen as sampling from a kernel density estimate. Clearly we have to decide about the density of
the noise (called kernel) and about the covariance matrix of the noise. The mathematical theory
of kernel density estimation shows us that we are comparatively free in choosing the kernel. It
also supplies us with a simple formula to compute the optimal standarddeviation of the noise,
called bandwidth (or window width) of the kernel.

Currently only a Gaussian kernel with the same covariance matrix as the given sample is
implemented. However it is possible to choose between a variance corrected version or those
with optimal MISE. Additionally a smoothing factor can be set.

Function reference

[–]UNUR_PAR* unur vempk new (const UNUR_DISTR* distribution)
Get default parameters for generator.

[–]int unur vempk set smoothing (UNUR_PAR* parameters, double smoothing)
[–]int unur vempk chg smoothing (UNUR_GEN* generator, double smoothing)

Set and change the smoothing factor. The smoothing factor controlles how “smooth” the re-
sulting density estimation will be. A smoothing factor equal to 0 results in naive resampling.
A very large smoothing factor (together with the variance correction) results in a density
which is approximately equal to the kernel. Default is 1 which results in a smoothing param-
eter minimising the MISE (mean integrated squared error) if the data are not too far away
from normal. If a large smoothing factor is used, then variance correction must be switched
on.
Default: 1

106 UNURAN User Manual

[–]int unur vempk set varcor (UNUR_PAR* parameters, int varcor)
[–]int unur vempk chg varcor (UNUR_GEN* generator, int varcor)

Switch variance correction in generator on/off. If varcor is TRUE then the variance of the used
density estimation is the same as the sample variance. However this increases the MISE of
the estimation a little bit.
Default is FALSE.

5.7 Methods for discrete univariate distributions

Overview of methods

� �
Methods for discrete univariate distributions
sample with unur_sample_discr

method PMF PV mode sum other
DARI x x ~ T-concave
DAU [x] x
DGT [x] x
DSTD build-in standard distribution
DSS [x] x x
 	
Example

/* --- */

/* File: example_discr.c */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* Example how to sample from a discrete univariate distribution.*/

/* --- */

int main()

{

int i;

double param = 0.3;

double probvec[10] = {1.0, 2.0, 3.0, 4.0, 5.0,\

6.0, 7.0, 8.0, 4.0, 3.0};

/* Declare the three UNURAN objects. */

UNUR_DISTR *distr1, *distr2; /* distribution objects */

UNUR_PAR *par1, *par2; /* parameter objects */

UNUR_GEN *gen1, *gen2; /* generator objects */

/* First distribution: defined by PMF. */

distr1 = unur_distr_geometric(¶m, 1);

unur_distr_discr_set_mode(distr1, 0);

/* Choose a method: DARI. */

par1 = unur_dari_new(distr1);

Chapter 5: Methods for generating non-uniform random variates 107

gen1 = unur_init(par1);

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen1 == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* Second distribution: defined by (finite) PV. */

distr2 = unur_distr_discr_new();

unur_distr_discr_set_pv(distr2, probvec, 10);

/* Choose a method: DGT. */

par2 = unur_dgt_new(distr2);

gen2 = unur_init(par2);

if (gen2 == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* print some random integers */

for (i=0; i<10; i++){

printf("number %d: %d\n", i*2, unur_sample_discr(gen1));

printf("number %d: %d\n", i*2+1, unur_sample_discr(gen2));

}

/* Destroy all objects. */

unur_distr_free(distr1);

unur_distr_free(distr2);

unur_free(gen1);

unur_free(gen2);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

Example (String API)

/* --- */

/* File: example_discr_str.c */

/* --- */

/* String API. */

/* --- */

/* Include UNURAN header file. */

#include <unuran.h>

/* --- */

/* Example how to sample from a discrete univariate distribution.*/

/* --- */

int main()

{

int i; /* loop variable */

/* Declare UNURAN generator objects. */

UNUR_GEN *gen1, *gen2; /* generator objects */

108 UNURAN User Manual

/* First distribution: defined by PMF. */

gen1 = unur_str2gen("geometric(0.3); mode=0 & method=dari");

/* It is important to check if the creation of the generator */

/* object was successful. Otherwise ‘gen’ is the NULL pointer */

/* and would cause a segmentation fault if used for sampling. */

if (gen1 == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* Second distribution: defined by (finite) PV. */

gen2 = unur_str2gen("distr=discr; pv=(1,2,3,4,5,6,7,8,4,3) & method=dgt");

if (gen2 == NULL) {

fprintf(stderr, "ERROR: cannot create generator object\n");

exit (EXIT_FAILURE);

}

/* print some random integers */

for (i=0; i<10; i++){

printf("number %d: %d\n", i*2, unur_sample_discr(gen1));

printf("number %d: %d\n", i*2+1, unur_sample_discr(gen2));

}

/* Destroy all objects. */

unur_free(gen1);

unur_free(gen2);

exit (EXIT_SUCCESS);

} /* end of main() */

/* --- */

5.7.1 DARI – discrete automatic rejection inversion

Required: T-concave PMF, mode, approximate area

Speed: Set-up: moderate, Sampling: fast

reference: [HDa96]

DARI is based on rejection inversion, which can be seen as an adaptation of transformed
density rejection to discrete distributions. The used transformation is -1/sqrt(x).

DARI uses three almost optimal points for constructing the (continuous) hat. Rejection is
then done in horizontal direction. Rejection inversion uses only one uniform random variate per
trial.

DARI has moderate set-up times (the PMF is evaluated nine times), and good marginal
speed, especially if an auxiliary array is used to store values during generation.

DARI works for all T-(-1/2)-concave distributions. It requires the PMF and the location
of the mode. Moreover the approximate sum over the PMF is used. (If no sum is given for
the distribution the algorithm assumes that it is approximately 1.) The rejection constant is
bounded from above by 4 for all T-concave distributions.

It is possible to change the parameters and the domain of the chosen distribution without
building a new generator object by using the unur_dari_chg_pmfparams and unur_dari_chg_
domain call, respectively. But then unur_dari_chg_mode and unur_dari_chg_pmfsum have to
be used to reset the corresponding figures whenever they were changed. Before sampling from

Chapter 5: Methods for generating non-uniform random variates 109

the distribution again, unur_dari_reinit must be executed. (Otherwise the generator might
produce garbage).

There exists a test mode that verifies whether the conditions for the method are satisfied
or not. It can be switched on by calling unur_dari_set_verify and unur_dari_chg_verify,
respectively. Notice however that sampling is (much) slower then.

Function reference

[–]UNUR_PAR* unur dari new (const UNUR_DISTR* distribution)
Get default parameters for generator.

[–]int unur dari reinit (UNUR_GEN* generator)
Update an existing generator object after the distribution has been modified. It must be
executed whenever the parameters or the domain of the distributions has been changed (see
below). It is faster than destroying the existing object and building a new one from scratch.
If reinitialization has been successful UNUR_SUCCESS is returned, in case of a failure an error
code is returned.

[–]int unur dari set squeeze (UNUR_PAR* parameters, int squeeze)
Turn utilization of the squeeze of the algorithm on/off. This squeeze does not resamble the
squeeze of the continuous TDR method. It was especially designed for rejection inversion.

The squeeze is not necessary if the size of the auxiliary table is big enough (for the given
distribution). Using a squeeze is suggested to speed up the algorithm if the domain of the
distribution is very big or if only small samples are produced.

Default: no squeeze.

[–]int unur dari set tablesize (UNUR_PAR* parameters, int size)
Set the size for the auxiliary table, that stores constants computed during generation. If
size is set to 0 no table is used. The speed-up can be impressive if the PMF is expensive to
evaluate and the “main part of the distribution” is concentrated in an interval shorter than
the size of the table.

Default is 100.

[–]int unur dari set cpfactor (UNUR_PAR* parameters, double cp_factor)
Set factor for position of the left and right construction point, resp. The cp factor is used to
find almost optimal construction points for the hat function. There is no need to change this
factor in almost all situations.

Default is 0.664.

[–]int unur dari set verify (UNUR_PAR* parameters, int verify)
[–]int unur dari chg verify (UNUR_GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the condition is violated for some x then
unur_errno is set to UNUR_ERR_GEN_CONDITION. However notice that this might happen due
to round-off errors for a few values of x (less than 1%).

Default is FALSE.

110 UNURAN User Manual

[–]int unur dari chg pmfparams (UNUR_GEN* generator, double* params, int
n_params)

Change array of parameters of the distribution in a given generator object. Notice that this
call simply copies the parameters into the generator object. Thus if fewer parameters are
provided then the remaining parameters are left unchanged. unur_dari_reinit must be
executed before sampling from the generator again.
Important: The given parameters are not checked against domain errors; in opposition to the
unur_<distr>_new calls.

[–]int unur dari chg domain (UNUR_GEN* generator, int left, int right)
Change the left and right border of the domain of the (truncated) distribution. If the mode
changes when the domain of the (truncated) distribution is changed, then a correspondig
unur_dari_chg_mode call is required. (There is no domain checking as in the unur_init
call.) Use INT_MIN and INT_MAX for (minus) infinity. unur_dari_reinit must be executed
before sampling from the generator again.

[–]int unur dari chg mode (UNUR_GEN* generator, int mode)
Change mode of distribution. unur_dari_reinit must be executed before sampling from
the generator again.

[–]int unur dari upd mode (UNUR_GEN* generator)
Recompute the mode of the distribution. This call only works well when a distribution
object from the UNURAN library of standard distributions is used (see Chapter 7 [Standard
distributions], page 121). Otherwise a (slow) numerical mode finder is called. If no mode can
be found, then an error code is returnded and unur_errno is set to UNUR_ERR_DISTR_DATA.
unur_dari_reinit must be executed before sampling from the generator again.

[–]int unur dari chg pmfsum (UNUR_GEN* generator, double sum)
Change sum over the PMF of distribution. unur_dari_reinit must be executed before
sampling from the generator again.

[–]int unur dari upd pmfsum (UNUR_GEN* generator)
Recompute sum over the PMF of the distribution. It only works when a distribution ob-
jects from the UNURAN library of standard distributions is used (see Chapter 7 [Standard
distributions], page 121). Otherwise an error code is returned and unur_errno is set to UNUR_
ERR_DISTR_DATA. unur_dari_reinit must be executed before sampling from the generator
again.

5.7.2 DAU – (Discrete) Alias-Urn method

Required: probability vector (PV)

Speed: Set-up: slow (linear with the vector-length), Sampling: very fast

reference: [WAa77]

DAU samples from distributions with arbitrary but finite probability vectors (PV) of length
N. The algorithmus is based on an ingeneous method by A.J. Walker and requires a table of size
(at least) N. It needs one random numbers and only one comparison for each generated random
variate. The setup time for constructing the tables is O(N).

By default the probability vector is indexed starting at 0. However this can be changed in
the distribution object by a unur_distr_discr_set_domain call.

Chapter 5: Methods for generating non-uniform random variates 111

The method also works when no probability vector but a PMF is given. However then
additionally a bounded (not too large) domain must be given or the sum over the PMF (see
unur_distr_discr_make_pv for details).

Function reference

[–]UNUR_PAR* unur dau new (const UNUR_DISTR* distribution)
Get default parameters for generator.

[–]int unur dau set urnfactor (UNUR_PAR* parameters, double factor)
Set size of urn table relative to length of the probability vector. It must not be less than 1.
Larger tables result in (slightly) faster generation times but require a more expensive setup.
However sizes larger than 2 are not recommended.
Default is 1.

5.7.3 DGT – (Discrete) Guide Table method (indexed search)

Required: probability vector (PV)

Speed: Set-up: slow (linear with the vector-length), Sampling: very fast

reference: [CAa74]

DGT samples from arbitrary but finite probability vectors. Random numbers are generated
by the inversion method, i.e.,
1. Generate a random number U ~ U(0,1).
2. Find largest integer I such that F(I) = P(X<=I) <= U.

Step (2) is the crucial step. Using sequential search requires O(E(X)) comparisons, where
E(X) is the expectation of the distribution. Indexed search, however, uses a guide table to jump
to some I’ <= I near I to find X in constant time. Indeed the expected number of comparisons
is reduced to 2, when the guide table has the same size as the probability vector (this is the
default). For larger guide tables this number becomes smaller (but is always larger than 1), for
smaller tables it becomes larger. For the limit case of table size 1 the algorithm simply does
sequential search (but uses a more expensive setup then method DSS (see Section 5.7.5 [DSS],
page 114). On the other hand the setup time for guide table is O(N), where N denotes the
length of the probability vector (for size 1 no preprocessing is required). Moreover, for very
large guide tables memory effects might even reduce the speed of the algorithm. So we do not
recommend to use guide tables that are more than three times larger than the given probability
vector. If only a few random numbers have to be generated, (much) smaller table sizes are
better. The size of the guide table relative to the length of the given probability vector can be
set by a unur_dgt_set_guidefactor call.

There exist two variants for the setup step which can be set by a unur_dgt_set_variant
call: Variants 1 and 2. Variant 2 is faster but more sensitive to roundoff errors when the guide
table is large. By default variant 2 is used for short probability vectors (N <1000) and variant 1
otherwise.

By default the probability vector is indexed starting at 0. However this can be changed in
the distribution object by a unur_distr_discr_set_domain call.

The method also works when no probability vector but a PMF is given. However, then
additionally a bounded (not too large) domain must be given or the sum over the PMF. In
the latter case the domain of the distribution is trucated (see unur_distr_discr_make_pv for
details).

112 UNURAN User Manual

Function reference

[–]UNUR_PAR* unur dgt new (const UNUR_DISTR* distribution)
Get default parameters for generator.

[–]int unur dgt set guidefactor (UNUR_PAR* parameters, double factor)
Set size of guide table relative to length of PV. Larger guide tables result in faster generation
time but require a more expensive setup. Sizes larger than 3 are not recommended. If the
relative size is set to 0, sequential search is used. However, this is not recommended, except
in exceptional cases, since method DSS (see Section 5.7.5 [DSS], page 114) is has almost no
setup and is thus faster (but requires the sum over the PV as input parameter).

Default is 1.

[–]int unur dgt set variant (UNUR_PAR* parameters, unsigned variant)
Set variant for setup step. Possible values are 1 or 2. Variant 2 is faster but more sensitive to
roundoff errors when the guide table is large. By default variant 2 is used for short probability
vectors (N <1000) and variant 1 otherwise.

5.7.4 DSROU – Discrete Simple Ratio-Of-Uniforms method

Required: T-concave PMF, mode, sum over PMF

Speed: Set-up: fast, Sampling: slow

reference: [LJa01]

DSROU is based on the ratio-of-uniforms method but uses universal inequalities for con-
structing a (universal) bounding rectangle. It works for all T-concave distributions with T(x)
= -1/sqrt(x).

It requires the PMF, the (exact) location of the mode and the sum over the given PDF. The
rejection constant is 4 for all T-concave distributions. Optionally the CDF at mode can be given
to increase the performance of the algorithm by means of the unur_dsrou_set_cdfatmode call.
Then the rejection constant is reduced to 2.

If the (exact) sum over the PMF is not known, then an upper bound can be used instead
(which of course increases the rejection constant). But then unur_dsrou_set_cdfatmode must
not be called.

It is possible to change the parameters and the domain of the chosen distribution without
building a new generator object using the unur_dsrou_chg_pmfparams and unur_dsrou_chg_
domain call, respectively. But then unur_dsrou_chg_pmfsum, unur_dsrou_chg_mode and unur_
dsrou_chg_cdfatmode have to be used to reset the corresponding figures whenever they have
changed.

If any of mode, CDF at mode, or the sum over the PMF has been changed, then unur_
dsrou_reinit must be executed. (Otherwise the generator produces garbage).

There exists a test mode that verifies whether the conditions for the method are satisfied
or not while sampling. It can be switched on or off by calling unur_dsrou_set_verify and
unur_dsrou_chg_verify, respectively. Notice however that sampling is (a little bit) slower
then.

Chapter 5: Methods for generating non-uniform random variates 113

Function reference

[–]UNUR_PAR* unur dsrou new (const UNUR_DISTR* distribution)
Get default parameters for generator.

[–]int unur dsrou reinit (UNUR_GEN* generator)
Update an existing generator object after the distribution has been modified. It must be
executed whenever the parameters or the domain of the distribution have been changed (see
below). It is faster than destroying the existing object and building a new one from scratch. If
reinitialization has been successful 1 is returned, in case of a failure an error code is returned.

[–]int unur dsrou set cdfatmode (UNUR_PAR* parameters, double Fmode)
Set CDF at mode. When set, the performance of the algorithm is increased by factor 2.
However, when the parameters of the distribution are changed unur_dsrou_chg_cdfatmode
has to be used to update this value. Notice that the algorithm detects a mode at the
left boundary of the domain automatically and it is not necessary to use this call for a
monotonically decreasing PMF.
Default: not set.

[–]int unur dsrou set verify (UNUR_PAR* parameters, int verify)
[–]int unur dsrou chg verify (UNUR_GEN* generator, int verify)

Turn verifying of algorithm while sampling on/off. If the condition squeeze(x) <= PMF(x) <=
hat(x) is violated for some x then unur_errno is set to UNUR_ERR_GEN_CONDITION. However
notice that this might happen due to round-off errors for a few values of x (less than 1%).
Default is FALSE.

[–]int unur dsrou chg pmfparams (UNUR_GEN* generator, double* params, int
n_params)

Change array of parameters of the distribution in a given generator object.
For standard distributions from the UNURAN library the parameters are checked. It these
are invalid, then an error code is returned. Moreover the domain is updated automatically
unless it has been changed before by a unur_distr_discr_set_domain call. Notice that
optional parameters are (re-)set to their default values if not given for UNURAN standard
distributions.
For other distributions params is simply copied into to distribution object. It is only checked
that n params does not exceed the maximum number of parameters allowed. Then an error
code is returned and unur_errno is set to UNUR_ERR_DISTR_NPARAMS.

[–]int unur dsrou chg domain (UNUR_GEN* generator, int left, int right)
Change left and right border of the domain of the (truncated) distribution. If the mode
changes when the domain of the (truncated) distribution is changed, then a correspondig
unur_dsrou_chg_mode is required. (There is no checking whether the domain is set or not
as in the unur_init call.)

[–]int unur dsrou chg mode (UNUR_GEN* generator, int mode)
Change mode of distribution. unur_dsrou_reinit must be executed before sampling from
the generator again.

[–]int unur dsrou upd mode (UNUR_GEN* generator)
Recompute the mode of the distribution. See unur_distr_cont_upd_mode for more details.
unur_dsrou_reinit must be executed before sampling from the generator again.

114 UNURAN User Manual

[–]int unur dsrou chg cdfatmode (UNUR_GEN* generator, double Fmode)
Change CDF at mode of distribution. unur_dsrou_reinit must be executed before sampling
from the generator again.

[–]int unur dsrou chg pmfsum (UNUR_GEN* generator, double sum)
Change sum over PMF of distribution. unur_dsrou_reinit must be executed before sam-
pling from the generator again.

[–]int unur dsrou upd pmfsum (UNUR_GEN* generator)
Recompute the sum over the the PMF of the distribution. It only works when a distribution
objects from the UNURAN library of standard distributions is used (see Chapter 7 [Standard
distributions], page 121). Otherwise unur_errno is set to UNUR_ERR_DISTR_DATA. unur_
dsrou_reinit must be executed before sampling from the generator again.

5.7.5 DSS – (Discrete) Sequential Search method

Required: probability vector (PV) and sum over PV; or probability mass function(PMF), sum
over PV and domain; or or cumulative distribution function (CDF)

Speed: Set-up: fast, Sampling: very slow (linear in expectation)

reference: [HLD04: Sect.3.1.1; Alg.3.1]

DSS samples from arbitrary discrete distributions. Random numbers are generated by the
inversion method, i.e.,
1. Generate a random number U ~ U(0,1).
2. Find largest integer I such that F(I) = P(X<=I) <= U.

Step (2) is the crucial step. Using sequential search requires O(E(X)) comparisons, where
E(X) is the expectation of the distribution. Thus this method is only recommended when only
a few random variates from the given distribution are required. Otherwise, table methods like
DGT (see Section 5.7.3 [DGT], page 111) or DAU (see Section 5.7.2 [DAU], page 110) are much
faster. These methods also need not the sum over the PMF (or PV) as input. On the other
hand, however, these methods always compute a table.

DSS runs with the PV, the PMF, or the CDF of the distribution. It uses actually uses the
first one in this list (in this ordering) that could be found.

Function reference

[–]UNUR_PAR* unur dss new (const UNUR_DISTR* distribution)
Get default parameters for generator.

5.7.6 DSTD – Discrete STandarD distributions

Required: standard distribution from UNURAN library (see Chapter 7 [Standard distribu-
tions], page 121).

Speed: Set-up: fast, Sampling: depends on distribution and generator

DSTD is a wrapper for special generators for discrete univariate standard distributions. It
only works for distributions in the UNURAN library of standard distributions (see Chapter 7

Chapter 5: Methods for generating non-uniform random variates 115

[Standard distributions], page 121). If a distribution object is provided that is build from
scratch, or no special generator for the given standard distribution is provided, the NULL pointer
is returned.

For some distributions more than one special generator (variants) is possible. These can
be choosen by a unur_dstd_set_variant call. For possible variants see Chapter 7 [Standard
distributions], page 121. However the following are common to all distributions:

UNUR_STDGEN_DEFAULT
the default generator.

UNUR_STDGEN_FAST
the fasted available special generator.

UNUR_STDGEN_INVERSION
the inversion method (if available).

Notice that the variant UNUR_STDGEN_FAST for a special generator might be slower than one
of the universal algorithms! Additional variants may exist for particular distributions.

Sampling from truncated distributions (which can be constructed by changing the default do-
main of a distribution by means of unur_distr_discr_set_domain call) is possible but requires
the inversion method.

Function reference

[–]UNUR_PAR* unur dstd new (const UNUR_DISTR* distribution)
Get default parameters for new generator. It requires a distribution object for a discrete
univariant distribution from the UNURAN library of standard distributions (see Chapter 7
[Standard distributions], page 121).

Using a truncated distribution is allowed only if the inversion method is available and selected
by the unur_dstd_set_variant call immediately after creating the parameter object. Use a
unur_distr_discr_set_domain call to get a truncated distribution.

[–]int unur dstd set variant (UNUR_PAR* parameters, unsigned variant)
Set variant (special generator) for sampling from a given distribution. For possible variants
see Chapter 7 [Standard distributions], page 121.

Common variants are UNUR_STDGEN_DEFAULT for the default generator, UNUR_STDGEN_FAST
for (one of the) fastest implemented special generators, and UNUR_STDGEN_INVERSION for the
inversion method (if available). If the selected variant number is not implemented, this call
has no effect.

[–]int unur dstd chg pmfparams (UNUR_GEN* gen, double* params, int
n_params)

Change array of parameters of the distribution in a given generator object. If the given
parameters are invalid for the distribution, no parameters are set. Notice that optional pa-
rameters are (re-)set to their default values if not given for UNURAN standard distributions.

Important: Integer parameter must be given as doubles.

5.8 Methods for random matrices

116 UNURAN User Manual

5.8.1 MCORR – Random CORRelation matrix

Required: Distribution object for random correlation matrix

Speed: Set-up: fast, Sampling: depends on dimension

reference: [DLa86: Sect.6.1; p.605]

MCORR generates a random correlation matrix. Thus a matrix H is generated where all
rows are independent random vectors of unit length uniformly on a sphere. Then HH ′ is a
correlation matrix (and vice versa if HH ′ is a correlation matrix then the rows of H are random
vectors on a sphere). There are many other possibilites (distributions) of sampling the random
rows from a sphere. The chosen one is simple but does in not result in a uniform distriubution
of the random correlation matrices.

It only works with distribution objects of random correlation matrices (see Section 7.4.1
[Random Correlation Matrix], page 131).

How To Use

Create a distibution object for random correlation matrices by a unur_distr_correlation
call (see Section 7.4.1 [Random Correlation Matrix], page 131). Notice that due to round-off
errors, there is a (small) chance that the resulting matrix is not positive definite for a Cholesky
decomposition algorithm, especially when the dimension of the distribution is high.

Function reference

[–]UNUR_PAR* unur mcorr new (const UNUR_DISTR* distribution)
Get default parameters for generator.

5.9 Methods for uniform univariate distributions

5.9.1 UNIF – wrapper for UNIForm random number generator

UNIF is a simple wrapper that makes it possible to use a uniform random number generator
as a UNURAN generator. There are no parameters for this method.

Function reference

[–]UNUR_PAR* unur unif new (const UNUR_DISTR* dummy)
Get default parameters for generator. UNIF does not need a distribution object. dummy is
not used and can (should) be set to NULL. It is used to keep the API consistent.

Chapter 6: Using uniform random number generators 117

6 Using uniform random number generators

Each generator has a pointer to a uniform (pseudo-) random number generator (URNG). It
can be set via the unur_set_urng call. It is also possible to read this pointer via unur_get_urng
or change the URNG for an existing generator object by means of unur_chg_urng; By this very
flexible concept it is possible that each generator has its own (independent) URNG or several
generators can share the same URNG.

If no URNG is provided for a parameter or generator object a default generator is used which
is the same for all generators. This URNG is defined in ‘unuran_config.h’ at compile time.
A pointer to this default URNG can be obtained via unur_get_default_urng. Nevertheless,
it is also possible to overwrite this default URNG by another one by means of the unur_set_
default_urng call. However, this only takes effect for new parameter objects.

The pointer to a URNG is of type UNUR_URNG*. Its definition depends on the compilation
switch UNUR_URNG_TYPE in ‘unuran_config.h’. Currently we have two possible switches (other
values would result in a compilation error):
1. UNUR URNG TYPE == UNUR URNG FVOID

This uses URNGs of type double uniform(void). If independent versions of the same
URNG should be used, a copy of the subroutine has to be implement in the program code
(with different names, of course). UNURAN contains some build-in URNGs of this type in
directory ‘src/uniform/’.

2. UNUR URNG TYPE == UNUR URNG PRNG
This uses the URNGs from the prng library. It provides a very flexible way to sample form
arbitrary URNGs by means of an object oriented programing paradigma. Similarly to the
UNURAN library independent generator objects can be build and used. Here UNUR_URNG*
is simply a pointer to such a uniform generator object.
This library has been developed by the pLab group at the university of Salzburg
(Austria, EU) and implemented by Otmar Lendl. It is available via anonymous
ftp from http://statistik.wu-wien.ac.at/prng/ or from the pLab site at
http://random.mat.sbg.ac.at/.

3. UNUR URNG TYPE == UNUR URNG RNGSTREAM
Use Pierre L’Ecuyer’s RngStream library for multiple indepen-
dent streams of pseudo-random numbers. It is available from
http://www.iro.umontreal.ca/~lecuyer/myftp/streams00/c/.

4. UNUR URNG TYPE == UNUR URNG GSL
Use the URNG from the GNU Scientific Library (GSL). It is available from
http://www.gnu.org/software/gsl/.

5. UNUR URNG TYPE == UNUR URNG GENERIC
This a generic interface with limited support. It uses a structure to store both a function
call of type double urng(void*) and a void pointer to the parameter list. Both pointers
must be set directly using the structure struct unur_urng_generic (there are currently
no calls that support this URNG type). It is defined as

struct unur_urng_generic {

double (*getrand)(void *params);

void *params;

};

All functions and parameters should be set at run time:
1. Allocate variable of type struct unur_urng_generic (or of type UNUR_URNG, which is

the same):
UNUR_URNG *urng;

urng = malloc(sizeof(UNUR_URNG));

http://statistik.wu-wien.ac.at/prng/
http://random.mat.sbg.ac.at/
http://www.iro.umontreal.ca/~lecuyer/myftp/streams00/c/
http://www.gnu.org/software/gsl/

118 UNURAN User Manual

2. Set function of type double (*rand)(void *) for sampling from URNG:
urng->getrand = my_uniform_rng;

3. Set pointer to parameters of for this function (or NULL if no parameters are required):
urng->params = my_parameters;

4. Use this URNG:
unur_urng_set_default(urng); (set default generator)

unur_urng_set_default_aux(urng); (set default aux. generator)

Notice that this must be done before UNURAN generator object are created. Of course
urng can also used just for a particular generator object. Use the following and similar
calls:

unur_set_urng(par,urng);

unur_chg_urng(gen,urng);

It is possible to use other interfaces to URNGs without much troubles. All changes have to
be done in file ‘unuran_config.h’. If you need such a new interface please feel free to contact
the authors of the UNURAN library.

Some generating methods provide the possibility of correlation induction. To use this feature
a second auxiliary URNG is required. It can be set and changed by the unur_set_urng_aux
and unur_chg_urng_aux call, respectively. Since the auxiliary generator is by default the same
as the main generator, the auxiliary URNG must be set after any unur_set_urng or unur_chg_
urng call! Since in special cases mixing of two URNG might cause problems, we supply a default
auxiliary generator that can be used by the unur_use_urng_aux_default call (after the main
URNG has been set). This default auxiliary generator can be changed with analogous calls as
the (main) default uniform generator.

Function reference

Default uniform RNGs

[–]UNUR_URNG* unur get default urng (void)
Get the pointer to the default URNG. The default URNG is used by all generators where no
URNG was set explicitly by a unur_set_urng call.

[–]UNUR_URNG* unur set default urng (UNUR_URNG* urng_new)
Change the default URNG for new parameter objects.

[–]UNUR_URNG* unur set default urng aux (UNUR_URNG* urng_new)
[–]UNUR_URNG* unur get default urng aux (void)

Analogous calls for default auxiliary generator.

Uniform RNGs for generator objects

[–]int unur set urng (UNUR_PAR* parameters, UNUR_URNG* urng)
Use the URNG urng for the new generator. This overwrite the default URNG. It also sets
the auxiliary URNG to urng.

Important : For multivariate distributions that use marginal distributions this call does not
work properly. It is then better first to create the generator object (by a unur_init call)
and then change the URNG by means of unur_chg_urng.

Chapter 6: Using uniform random number generators 119

[–]UNUR_URNG* unur chg urng (UNUR_GEN* generator, UNUR_URNG* urng)
Change the URNG for the given generator. It returns the pointer to the old URNG that has
been used by the generator. It also changes the auxiliary URNG to urng and thus overwrite
the last unur_chg_urng_aux call.

[–]UNUR_URNG* unur get urng (UNUR_GEN* generator)
Get the pointer to the URNG that is used by the generator. This is usefull if two generators
should share the same URNG.

[–]int unur set urng aux (UNUR_PAR* parameters, UNUR_URNG* urng_aux)
Use the auxiliary URNG urng_aux for the new generator. (Default is the default URNG
or the URNG from the last unur_set_urng call. Thus if the auxiliary generator should
be different to the main URNG, unur_set_urng_aux must be called after unur_set_urng.
The auxiliary URNG is used as second stream of uniform random number for correlation
induction. It is not possible to set an auxiliary URNG for a method that does not use one
(i.e. the call returns an error code).

[–]int unur use urng aux default (UNUR_PAR* parameters)
Use the default auxiliary URNG. (It must be set after unur_get_urng.) It is not possible
to set an auxiliary URNG for a method that does not use one (i.e. the call returns an error
code).

[–]int unur chgto urng aux default (UNUR_GEN* generator)
Switch to default auxiliary URNG. (It must be set after unur_get_urng.) It is not possible
to set an auxiliary URNG for a method that does not use one (i.e. the call returns an error
code).

[–]UNUR_URNG* unur chg urng aux (UNUR_GEN* generator, UNUR_URNG* urng_aux)

Change the auxiliary URNG for the given generator. It returns the pointer to the old auxiliary
URNG that has been used by the generator. It has to be called after each unur_chg_urng
when the auxiliary URNG should be different from the main URNG. It is not possible to
change the auxiliary URNG for a method that does not use one (i.e. the call NULL).

[–]UNUR_URNG* unur get urng aux (UNUR_GEN* generator)
Get the pointer to the auxiliary URNG that is used by the generator. This is usefull if two
generators should share the same URNG.

120 UNURAN User Manual

Chapter 7: UNURAN Library of standard distributions 121

7 UNURAN Library of standard distributions

Although it is not its primary target, many distributions are already implemented in UN-
URAN. This section presents these available distributions and their parameters.

The syntax to get a distribuion object for distributions <dname> is:

[–]UNUR_DISTR* unur distr <dname> (double* params, int n_params)
params is an array of doubles of size n params holding the parameters.

E.g. to get an object for the gamma distribution (with shape parameter) use
unur_distr_gamma(params, 1);

Distributions may have default parameters with need not be given explicitely. E.g. The
gamma distribution has three parameters: the shape, scale and location parameter. Only the
(first) shape parameter is required. The others can be omitted and are then set by default
values.

/* alpha = 5; default: beta = 1, gamma = 0 */

double fpar[] = {5.};

unur_distr_gamma(fpar, 1);

/* alpha = 5, beta = 3; default: gamma = 0 */

double fpar[] = {5., 3.};

unur_distr_gamma(fpar, 2);

/* alpha = 5, beta = 3, gamma = -2

double fpar[] = {5., 3., -2.};

unur_distr_gamma(fpar, 3);

Important: Naturally the computational accuracy limits the possible parameters. There
shouldn’t be problems when the parameters of a distribution are in a “reasonable” range but
e.g. the normal distribution N(10^15,1) won’t yield the desired results. (In this case it would
be better generating N(0,1) and then transform the results.)
Of course computational inaccuracy is not specific to UNURAN and should always be kept in
mind when working with computers.

Important: The routines of the standard library are included for non-uniform random variate
generation and not to provide special functions for statistical computations.

Remark

The following keywords are used in the tables:

PDF probability density function, with variable x.

PMF probability mass function, with variable k.

constant normalization constant for given PDF and PMF, resp. They must be multiplied by
constant to get the “real” PDF and PMF.

CDF gives information whether the CDF is implemented in UNURAN.

domain domain PDF and PMF, resp.

parameters n std (n total): list
list of parameters for distribution, where n std is the number of parameters for the
standard form of the distribution and n total the total number for the (non-standard
form of the) distribution. list is the list of parameters in the order as they are stored

122 UNURAN User Manual

in the array of parameters. Optional parameter that can be omitted are enclosed in
square brackets [...].
A detailed list of these parameters gives then the range of valid parameters and
defaults for optional parameters that are used when these are omitted.

reference gives reference for distribution (see Appendix C [Bibliography], page 155).

special generators
lists available special generators for the distribution. The first number is the vari-
ant that to be set by unur_cstd_set_variant and unur_dstd_set_variant call,
respectively. If no variant is set the default variant DEF is used. In the table the
respective abbreviations DEF and INV are used for UNUR_STDGEN_DEFAULT and UNUR_
STDGEN_INVERSION. Also the references for these methods are given (see Appendix C
[Bibliography], page 155).
Notice that these generators might be slower than universal methods.
If DEF is ommited, the first entry is the default generator.

7.1 UNURAN Library of continuous univariate distributions

7.1.1 beta – Beta distribution

PDF: (x− a)p−1 (b− x)q−1

constant: 1/(Beta(p, q) (b− a)p+q−1)

domain: a < x < b

parameters 2 (4): p, q [, a, b]

No. name default
[0] p > 0 (scale)
[1] q > 0 (scale)
[2] a 0 (location, scale)
[3] b > a 1 (location, scale)

reference: [JKBc95: Ch.25; p.210]

7.1.2 cauchy – Cauchy distribution

PDF: 1
1+((x−θ)/λ)2

constant: 1
π λ

domain: −∞ < x < ∞

parameters 0 (2): [theta [, lambda]]

No. name default
[0] θ 0 (location)
[1] λ > 0 1 (scale)

reference: [JKBb94: Ch.16; p.299]

special generators:
INV Inversion method

Chapter 7: UNURAN Library of standard distributions 123

7.1.3 chi – Chi distribution

PDF: xν−1 exp(−x2/2)

constant: 1/(2(ν/2)−1 Γ(ν/2))

domain: 0 ≤ x < ∞

parameters 1 (1): nu

No. name default
[0] ν > 0 (shape)

reference: [JKBb94: Ch.18; p.417]

special generators:
DEF Ratio of Uniforms with shift (only for ν ≥ 1) [MJa87]

7.1.4 chisquare – Chisquare distribution

PDF: x(ν/2)−1 exp(−x/2)

constant: 1/(2ν/2 Γ(ν/2))

domain: 0 ≤ x < ∞

parameters 1 (1): nu

No. name default
[0] ν > 0 (shape (degrees of freedom))

reference: [JKBb94: Ch.18; p.416]

7.1.5 exponential – Exponential distribution

PDF: exp(−x−θ
σ

)

constant: 1
σ

domain: θ ≤ x < ∞

parameters 0 (2): [sigma [, theta]]

No. name default
[0] σ > 0 1 (scale)
[1] θ 0 (location)

reference: [JKBb94: Ch.19; p.494]

special generators:
INV Inversion method

7.1.6 extremeI – Extreme value type I (Gumbel-type) distribution

PDF: exp(− exp(−x−ζ
θ

)− x−ζ
θ

)

constant: 1
θ

domain: −∞ < x < ∞

124 UNURAN User Manual

parameters 0 (2): [zeta [, theta]]

No. name default
[0] ζ 0 (location)
[1] θ > 0 1 (scale)

reference: [JKBc95: Ch.22; p.2]

special generators:

INV Inversion method

7.1.7 extremeII – Extreme value type II (Frechet-type) distribution

PDF: exp(−(x−ζ
θ

)−k) (x−ζ
θ

)−k−1

constant: k
θ

domain: ζ < x < ∞

parameters 1 (3): k [, zeta [, theta]]

No. name default
[0] k > 0 (shape)
[1] ζ 0 (location)
[2] θ > 0 1 (scale)

reference: [JKBc95: Ch.22; p.2]

special generators:

INV Inversion method

7.1.8 gamma – Gamma distribution

PDF: (x−γ
β

)α−1 exp(−x−γ
β

)

constant: 1/(β Γ(α))

domain: γ < x < ∞

parameters 1 (3): alpha [, beta [, gamma]]

No. name default
[0] α > 0 (shape)
[1] β > 0 1 (scale)
[2] γ 0 (location)

reference: [JKBb94: Ch.17; p.337]

special generators:

DEF Acceptance Rejection combined with Acceptance Complement [ADa74]
[ADa82]

2 Rejection from log-logistic envelopes [CHa77]

Chapter 7: UNURAN Library of standard distributions 125

7.1.9 laplace – Laplace distribution

PDF: exp(− |x−θ|
φ

)

constant: 1
2 φ

domain: −∞ < x < ∞

parameters 0 (2): [theta [, phi]]

No. name default
[0] θ 0 (location)
[1] φ > 0 1 (scale)

reference: [JKBc95: Ch.24; p.164]

special generators:
INV Inversion method

7.1.10 logistic – Logistic distribution

PDF: exp(−x−α
β

(1 + exp(−x−α
β

))−2

constant: 1
β

domain: −∞ < x < ∞

parameters 0 (2): [alpha [, beta]]

No. name default
[0] α 0 (location)
[1] β > 0 1 (scale)

reference: [JKBc95: Ch.23; p.115]

special generators:
INV Inversion method

7.1.11 lomax – Lomax distribution (Pareto distribution of second
kind)

PDF: (x + C)−(a+1)

constant: aCa

domain: 0 ≤ x < ∞

parameters 1 (2): a [, C]

No. name default
[0] a > 0 (shape)
[1] C > 0 1 (scale)

reference: [JKBb94: Ch.20; p.575]

special generators:
INV Inversion method

126 UNURAN User Manual

7.1.12 normal – Normal distribution

PDF: exp(− 1
2
(x−µ

σ
)2)

constant: 1
σ
√

2π

domain: −∞ < x < ∞
parameters 0 (2): [mu [, sigma]]

No. name default
[0] µ 0 (location)
[1] σ > 0 1 (scale)

reference: [JKBb94: Ch.13; p.80]

special generators:
DEF ACR method (Acceptance-Complement Ratio) [HDa90]

1 Box-Muller method [BMa58]

2 Polar method with rejection [MGa62]

3 Kindermann-Ramage method [KRa76]

INV Inversion method (slow)

7.1.13 pareto – Pareto distribution (of first kind)

PDF: x−(a+1)

constant: a ka

domain: k < x < ∞
parameters 2 (2): k, a

No. name default
[0] k > 0 (shape, location)
[1] a > 0 (shape)

reference: [JKBb94: Ch.20; p.574]

special generators:
INV Inversion method

7.1.14 powerexponential – Powerexponential (Subbotin) distribution

PDF: exp(−|x|τ)
constant: 1/(2 Γ(1 + 1/τ))

domain: −∞ < x < ∞
parameters 1 (1): tau

No. name default
[0] τ > 0 (shape)

reference: [JKBc95: Ch.24; p.195]

special generators:
DEF Transformed density rejection (only for τ ≥ 1) [DLa86]

Chapter 7: UNURAN Library of standard distributions 127

7.1.15 rayleigh – Rayleigh distribution

PDF: x exp(−1/2 (x
σ
)2)

constant: 1
σ2

domain: 0 ≤ x < ∞

parameters 1 (1): sigma

No. name default
[0] σ > 0 (scale)

reference: [JKBb94: Ch.18; p.456]

7.1.16 student – Student’s t distribution

PDF: (1 + t2

ν
)−(ν+1)/2

constant: 1√
ν B(1/2,ν/2)

CDF: not implemented!

domain: −∞ < x < ∞

parameters 1 (1): nu

No. name default
[0] ν > 0 (shape)

reference: [JKBc95: Ch.28; p.362]

7.1.17 triangular – Triangular distribution

PDF: 2 x/H, for 0 ≤ x ≤ H
2 (1− x)/(1−H), for H ≤ x ≤ 1

constant: 1

domain: 0 ≤ x ≤ 1

parameters 0 (1): [H]

No. name default
[0] H 0 ≤ H ≤ 1 1/2 (shape)

reference: [JKBc95: Ch.26; p.297]

special generators:
INV Inversion method

7.1.18 uniform – Uniform distribution

PDF: 1
b−a

constant: 1

domain: a < x < b

128 UNURAN User Manual

parameters 0 (2): [a, b]

No. name default
[0] a 0 (location)
[1] b > a 1 (location)

reference: [JKBc95: Ch.26; p.276]

special generators:

INV Inversion method

7.1.19 weibull – Weibull distribution

PDF: (x−ζ
α

)c−1 exp(−(x−ζ
α

)c)

constant: c
α

domain: ζ < x < ∞

parameters 1 (3): c [, alpha [, zeta]]

No. name default
[0] c > 0 (shape)
[1] α > 0 1 (scale)
[2] ζ 0 (location)

reference: [JKBb94: Ch.21; p.628]

special generators:

INV Inversion method

7.2 UNURAN Library of continuous multivariate distributions

7.2.1 multinormal – Multinormal distribution

reference: [KBJe00: Ch.45; p.105]

UNUR_DISTR *unur_distr_multinormal(int dim, const double *mean, const double
*covar) creates a distribution object for the multinormal distribution with dim components.
mean is an array of size dim. A NULL pointer for mean is interpreted as the zero vector
(0,. . . ,0). covar is an array of size dimxdim and holds the covariance matrix, where the rows of
the matrix are stored consecutively in this array. The NULL pointer can be used instead the
identity matrix. If covar is not a valid covariance matrix (i.e., not positive definite) then no
distribution object is created and NULL is returned.

For standard form of the distribution use the null vector for mean and the identity matrix
for covar.

7.3 UNURAN Library of discrete univariate distributions

At the moment there are no CDFs implemented for discrete distribution. Thus unur_distr_
discr_upd_pmfsum does not work properly for truncated distribution.

Chapter 7: UNURAN Library of standard distributions 129

7.3.1 binomial – Binomial distribution

PMF:
(n

k

)
pk (1− p)n−k

constant: 1

domain: 0 ≤ k ≤ n

parameters 2 (2): n, p

No. name default
[0] n ≥ 1 (no. of elements)
[1] p 0 < p < 1 (shape)

reference: [JKKa92: Ch.3; p.105]

special generators:
DEF Ratio of Uniforms/Inversion [STa89]

7.3.2 geometric – Geometric distribution

PMF: p (1− p)k

constant: 1

domain: 0 ≤ k < ∞

parameters 1 (1): p

No. name default
[0] p 0 < p < 1 (shape)

reference: [JKKa92: Ch.5.2; p.201]

special generators:

INV Inversion method

7.3.3 hypergeometric – Hypergeometric distribution

PMF:
(M

k

) (N−M
n−k

)
/
(N

n

)
constant: 1

domain: max(0, n−N + M) ≤ k ≤ min(n, M)

parameters 3 (3): N, M, n

No. name default
[0] N ≥ 1 (no. of elements)
[1] M 1 ≤ M ≤ N (shape)
[2] n 1 ≤ n ≤ N (shape)

reference: [JKKa92: Ch.6; p.237]

special generators:
DEF Ratio of Uniforms/Inversion [STa89]

130 UNURAN User Manual

7.3.4 logarithmic – Logarithmic distribution

PMF: θk/k

constant: −log(1.− θ);

domain: 1 ≤ k < ∞

parameters 1 (1): theta

No. name default
[0] θ 0 < θ < 1 (shape)

reference: [JKKa92: Ch.7; p.285]

special generators:

DEF Inversion/Transformation [KAa81]

7.3.5 negativebinomial – Negative Binomial distribution

PMF:
(k+r−1

r−1

)
pr (1− p)k

constant: 1

domain: 0 ≤ k < ∞

parameters 2 (2): p, r

No. name default
[0] p 0 < p < 1 (shape)
[1] r > 0 (shape)

reference: [JKKa92: Ch.5.1; p.200]

7.3.6 poisson – Poisson distribution

PMF: θk/k!

constant: exp(θ)

domain: 0 ≤ k < ∞

parameters 1 (1): theta

No. name default
[0] θ > 0 (shape)

reference: [JKKa92: Ch.4; p.151]

special generators:

DEF Tabulated Inversion combined with Acceptance Complement [ADb82]

2 Tabulated Inversion combined with Patchwork Rejection [ZHa94]

Chapter 7: UNURAN Library of standard distributions 131

7.4 UNURAN Library of random matrices

7.4.1 correlation – Random correlation matrix

UNUR_DISTR *unur_distr_correlation(int n) creates a distribution object for a random
correlation matrix of n rows and columns. It can be used with method MCORR (see Section 5.8.1
[Random Correlation Matrix], page 116) to generate random correlation matrices of the given
size.

132 UNURAN User Manual

Chapter 8: Error handling 133

8 Error handling

This chapter describes the way that UNURAN routines report errors.

8.1 Error reporting

UNURAN routines report an error whenever they cannot perform the task requested of them.
For example, apply transformed density rejection to a distribution that violates the T-concavity
condition, or trying to set a parameter that is out of range. It might also happen that the
setup fails for transformed density rejection for a T-concave distribution with some extreme
density function simply because of round-off errors that makes the generation of a hat function
numerically impossible. Situations like this may happen when using black box algorithms and
you should check the return values of all routines.

All ..._set_..., and ..._chg_... calls return 0 if it was not possible to set or change
the desired parameters, e.g. because the given values are out of range, or simply because you
have changed the method but not the corresponding set call and thus an invalid parameter or
generator object is used.

All routines that return a pointer to the requested object will return a NULL pointer in case
of error. (Thus you should always check the pointer to avoid possible segmentation faults.
Sampling routines usually do not check the given pointer to the generator object. However you
can switch on checking for NULL pointer defining the compiler switch UNUR_ENABLE_CHECKNULL
in ‘unuran_config.h’ to avoid nasty segmentation faults.)

The library distinguishes between two major classes of error:

(fatal) errors:
The library was not able to construct the requested object.

warnings: Some problems encounters while constructing a generator object. The routine has
tried to solve the problem but the resulting object might not be what you want. For
example, chosing a special variant of a method does not work and the initialization
routine might switch to another variant. Then the generator produces random vari-
ates of the requested distribution but correlation induction is not possible. However
it also might happen that changing the domain of a distribution has failed. Then
the generator produced random variates with too large/too small range, i.e. their
distribution is not correct

It is obvious from the example that this distinction between errors and warning is rather
crude and sometimes arbitrary.

UNURAN routines use the global variable unur_errno to report errors, completely analo-
gously to C library’s errno. (However this approach is not thread-safe. There can be only
one instance of a global variable per program. Different threads of execution may overwrite
unur_errno simultaneously). Thus when an error occurs the caller of the routine can examine
the error code in unur_errno to get more details about the reason why a routine failed. You
get a short description of the error by a unur_get_strerror call. All the error code numbers
have prefix UNUR_ERR_ and expand to non-zero constant unsigned integer values. Error codes
are divided into six main groups.

List of error codes

• Procedure executed successfully (no error)

UNUR_SUCCESS (0x0u)
success (no error)

134 UNURAN User Manual

• Errors that occurred while handling distribution objects.

UNUR_ERR_DISTR_SET
set failed (invalid parameter).

UNUR_ERR_DISTR_GET
get failed (parameter not set).

UNUR_ERR_DISTR_NPARAMS
invalid number of parameters.

UNUR_ERR_DISTR_DOMAIN
parameter(s) out of domain.

UNUR_ERR_DISTR_GEN
invalid variant for special generator.

UNUR_ERR_DISTR_REQUIRED
incomplete distribution object, entry missing.

UNUR_ERR_DISTR_UNKNOWN
unknown distribution, cannot handle.

UNUR_ERR_DISTR_INVALID
invalid distribution object.

UNUR_ERR_DISTR_DATA
data are missing.

UNUR_ERR_DISTR_PROP
desired property does not exist

• Errors that occurred while handling parameter objects.

UNUR_ERR_PAR_SET
set failed (invalid parameter)

UNUR_ERR_PAR_VARIANT
invalid variant -> using default

UNUR_ERR_PAR_INVALID
invalid parameter object

• Errors that occurred while handling generator objects.

UNUR_ERR_GEN
error with generator object.

UNUR_ERR_GEN_DATA
(possibly) invalid data.

UNUR_ERR_GEN_CONDITION
condition for method violated.

UNUR_ERR_GEN_INVALID
invalid generator object.

UNUR_ERR_GEN_SAMPLING
sampling error.

• Errors that occurred while parsing strings.

UNUR_ERR_STR
error in string.

Chapter 8: Error handling 135

UNUR_ERR_STR_UNKNOWN
unknown keyword.

UNUR_ERR_STR_SYNTAX
syntax error.

UNUR_ERR_STR_INVALID
invalid parameter.

UNUR_ERR_FSTR_SYNTAX
syntax error in function string.

UNUR_ERR_FSTR_DERIV
cannot derivate function.

• Other run time errors.

UNUR_ERR_DOMAIN
argument out of domain.

UNUR_ERR_ROUNDOFF
(serious) round-off error.

UNUR_ERR_MALLOC
virtual memory exhausted.

UNUR_ERR_NULL
invalid NULL pointer.

UNUR_ERR_COOKIE
invalid cookie.

UNUR_ERR_GENERIC
generic error.

UNUR_ERR_SILENT
silent error (no error message).

UNUR_ERR_INF
infinity occured.

UNUR_ERR_NAN
NaN occured.

UNUR_ERR_COMPILE
Requested routine requires different compilation switches. Recompilation of
library necessary.

UNUR_ERR_SHOULD_NOT_HAPPEN
Internal error, that should not happen. Please report this bug!

Function reference

[Variable]extern int unur errno
Global variable for reporting diagnostics of error.

136 UNURAN User Manual

8.2 Output streams

In addition to reporting error via the unur_errno mechanism the library also provides an
(optional) error handler. The error handler is called by the library functions when they are
about to report an error. Then a short error diagnostics is written via two output streams.
Both can be switched on/off by compiler flag UNUR_WARNINGS_ON in ‘unuran_config.h’.

The first stream is stderr. It can be enabled by defining the macro UNUR_ENABLE_STDERR
in ‘unuran_config.h’.

The second stream can be set abritrarily by the unur_set_stream call. If no such stream is
given by the user a default stream is used by the library: all warnings and error messages are
written into the file unuran.log in the current working directory. The name of this file defined
by the macro UNUR_LOG_FILE in ‘unuran_config.h’. If the stdout should be used, define this
macro by "stdout".

This output stream is also used to log descriptions of build generator objects and for writing
debugging information. If you want to use this output stream for your own programs use
unur_get_stream to get its file handler. This stream is enabled by the compiler switch UNUR_
ENABLE_LOGFILE in ‘unuran_config.h’.

All warnings, error messages and all debugging information are written onto the same output
stream. To destinguish between the messages for different generators define the macro UNUR_
ENABLE_GENID in ‘unuran_config.h’. Then every generator object has a unique identifier that
is used for every message.

Function reference

[–]const char* unur get strerror (const int unur_errno)
Get a short description for error code value.

[–]FILE* unur set stream (FILE* new_stream)
Set new file handle for output stream; the old file handle is returned. The NULL
pointer is not allowed. (If you want to disable logging of debugging information use
unur set default debug(UNUR DEBUG OFF) instead.)
The output stream is used to report errors and warning, and debugging information. It is
also used to log descriptions of build generator objects (when this feature is switched on; see
also ?).

[–]FILE* unur get stream (void)
Get the file handle for the current output stream.

Chapter 9: Debugging 137

9 Debugging

The UNURAN library has several debugging levels which can be switched on/off by debug-
ging flags. This debugging feature can be enabled by defining the macro UNUR_ENABLE_LOGGING
in ‘unuran_config.h’. The debugging levels range from print a short description of the build
generator object to a detailed description of hat functions and tracing the sampling routines.
The output is print onto the output stream obtained by unur_get_stream (see also ?). These
flags can be set or changed by the respective calls unur_set_debug and unur_chg_debug in-
dependently for each generator. The default debugging flags are given by the macro UNUR_
DEBUGFLAG_DEFAULT in ‘unuran_config.h’. This default can be overwritten at run time by a
unur_set_default_debug call.

Off course these debugging flags depend on the chosen method. Since most of these are
merely for debugging the library itself, a description of the flags are given in the corresponding
source files of the method. Nevertheless, the following flags can be used with all methods.

Common debug flags:

UNUR_DEBUG_OFF
switch off all debuging information

UNUR_DEBUG_ALL
all avaivable information

UNUR_DEBUG_INIT
parameters of generator object after initialization

UNUR_DEBUG_SETUP
data created at setup

UNUR_DEBUG_ADAPT
data created during adaptive steps

UNUR_DEBUG_SAMPLE
trace sampling

Almost all routines check a given pointer before they read from or write to the given address.
This does not hold for time-critical routines like all sampling routines. Then you are responsible
for checking a pointer that is returned from a unur_init call. However it is possible to turn on
checking for invalid NULL pointers even in such time-critical routines by defining UNUR_ENABLE_
CHECKNULL in ‘unuran_config.h’.

Another debugging tool used in the library are magic cookies that validate a given pointer.
It produces an error whenever a given pointer points to an object that is invalid in the context.
The usage of magic cookies can be switched on by defining UNUR_COOKIES in ‘unuran_config.h’.

Function reference

[–]int unur set debug (UNUR_PAR* parameters, unsigned debug)
Set debugging flags for generator.

[–]int unur chg debug (UNUR_GEN* generator, unsigned debug)
Change debugging flags for generator.

[–]int unur set default debug (unsigned debug)
Overwrite the default debugging flag.

138 UNURAN User Manual

Chapter 10: Testing 139

10 Testing

The following routines can be used to test the performance of the implemented generators
and can be used to verify the implementions. They are declared in ‘unuran_tests.h’ which has
to be included.

Function reference

[–]void unur run tests (UNUR_PAR* parameters, unsigned tests)
Run a battery of tests. The following tests are available (use | to combine these tests):

UNUR_TEST_ALL
run all possible tests.

UNUR_TEST_TIME
estimate generation times.

UNUR_TEST_N_URNG
count number of uniform random numbers

UNUR_TEST_CHI2
run chi^2 test for goodness of fit

UNUR_TEST_SAMPLE
print a small sample.

All these tests can be started individually (see below).

[–]void unur test printsample (UNUR_GEN* generator, int n_rows, int n_cols,
FILE* out)

Print a small sample with n rows rows and n cols columns. out is the output stream to
which all results are written.

[–]UNUR_GEN* unur test timing (UNUR_PAR* parameters, int log_samplesize,
double* time_setup, double* time_sample, int verbosity, FILE* out)

Timing. parameters is an parameter object for which setup time and marginal generation
times have to be measured. The results are written into time setup and time sample, respec-
tively. log samplesize is the common logarithm of the sample size that is used for timing.

If verbosity is TRUE then a small table is printed to the stdout with setup time, marginal
generation time and average generation times for generating 10, 100, . . . random variates.
All times are given in micro seconds and relative to the generation times for the underlying
uniform random number (using the UNIF interface) and an exponential distributed random
variate using the inversion method.

The created generator object is returned. If a generator object could not be created success-
fully, then NULL is returned.

If verbosity is TRUE the result is written to the output stream out.

Notice: All timing results are subject to heavy changes. Reruning timings usually results in
different results. Minor changes in the source code can cause changes in such timings up to
25 percent.

140 UNURAN User Manual

[–]double unur test timing uniform (const UNUR_PAR* parameters, int
log_samplesize)

[–]double unur test timing exponential (const UNUR_PAR* parameters, int
log_samplesize)

Marginal generation times for the underlying uniform random number (using the UNIF in-
terface) and an exponential distributed random variate using the inversion method. These
times are used in unur_test_timing to compute the relative timings results.

[–]double unur test timing total (const UNUR_PAR* parameters, int
samplesize, double avg_duration)

Timing. parameters is an parameter object for which average times a sample of size samplesize
(including setup) are estimated. Thus sampling is repeated and the median of these timings
is returned (in micro seconds). The number of iterations is computed automatically such
that the total amount of time necessary for the test ist approximately avg duration (given in
seconds). However, for very slow generator with expensive setup time the time necessary for
this test may be (much) larger.
If an error occurs then -1 is returned.
Notice: All timing results are subject to heavy changes. Reruning timings usually results in
different results. Minor changes in the source code can cause changes in such timings up to
25 percent.

[–]int unur test count urn (UNUR_GEN* generator, int samplesize, int
verbosity, FILE* out)

Count used uniform random numbers. It returns the total number of uniform random num-
bers required for a sample of non-uniform random variates of size samplesize. Counting uni-
form random numbers might not work for the chosen UNUR_URNG_TYPE in ‘unuran_config.h’.
In this case -1 is returned.
If verbosity is TRUE the result is written to the output stream out.

[–]double unur test chi2 (UNUR_GEN* generator, int intervals, int samplesize,
int classmin, int verbosity, FILE* out)

Run a Chi^2 test with the generator. The resulting p-value is returned.
It works with discrete und continuous univariate distributions. For the latter the CDF of the
distribution is required.
intervals is the number of intervals that is used for continuous univariate distributions. sam-
plesize is the size of the sample that is used for testing. If it is set to 0 then a sample of size
intervals^2 is used (bounded to some upper bound).
classmin is the minimum number of expected entries per class. If a class has to few entries
then some classes are joined.
verbosity controls the output of the routine. If it is set to 1 then the result is written to
the output stream out. If it is set to 2 additionally the list of expected and observed data is
printed. If it is set to 3 then all generated numbers are printed. There is no output when it
is set to 0.
Notice, for multivariate distributions also tests on the marginal distributions are performed.
Then the minimal p-value of all these tests is returned.

[–]int unur test moments (UNUR_GEN* generator, double* moments, int
n_moments, int samplesize, int verbosity, FILE* out)

Computes the first n moments central moments for a sample of size samplesize. The result
is stored into the array moments. n moments must be an integer between 1 and 4.
If verbosity is TRUE the result is written to the output stream out.

Chapter 10: Testing 141

[–]double unur test correlation (UNUR_GEN* generator1, UNUR_GEN* generator2,
int samplesize, int verbosity, FILE* out)

Compute the correlation coefficient between streams from generator1 and generator2 for two
samples of size samplesize. The resultung correlation is returned.
If verbosity is TRUE the result is written to the output stream out.

[–]int unur test quartiles (UNUR_GEN* generator, double* q0, double* q1,
double* q2, double* q3, double* q4, int samplesize, int verbosity, FILE*
out)

Estimate quartiles of sample of size samplesize. The resulting quantiles are stored in the
variables q:

q0 minimum

q1 25%

q2 median (50%)

q3 75%

q4 maximum

If verbosity is TRUE the result is written to the output stream out.

142 UNURAN User Manual

Chapter 11: Miscelleanous 143

11 Miscelleanous

11.1 Mathematics

The following macros have been defined

UNUR_INFINITY
indicates infinity for floating point numbers (of type double). Internally HUGE_VAL
is used.

INT_MAX
INT_MIN indicate infinity and minus infinity, resp., for integers (defined by ISO C standard).

TRUE
FALSE bolean expression for return values of set functions.

144 UNURAN User Manual

Appendix A: A Short Introduction to Random Variate Generation 145

Appendix A A Short Introduction to Random
Variate Generation

Random variate generation is the small field of research that deals with algorithms to generate
random variates from various distributions. It is common to assume that a uniform random
number generator is available. This is a program that produces a sequence of independent and
identically distributed continuous U(0, 1) random variates (i.e. uniform random variates on the
interval (0, 1)). Of course real world computers can never generate ideal random numbers and
they cannot produce numbers of arbitrary precision but state-of-the-art uniform random number
generators come close to this aim. Thus random variate generation deals with the problem of
transforming such a sequence of U(0, 1) random numbers into non-uniform random variates.

Here we shortly explain the basic ideas of the inversion, rejection, and the ratio of uniforms
method. How these ideas can be used to design a particular automatic random variate genera-
tion algorithms that can be applied to large classes of distributions is shortly explained in the
description of the different methods included in this manual.

For a deeper treatment of the ideas presented here, for other basic methods and for automatic
generators we refer the interested reader to our book [HLD04].

A.1 The Inversion Method

When the inverse F−1 of the cumulative distribution function is known, then random variate
generation is easy. We just generate a uniformly U(0, 1) distributed random number U and
return

X = F−1(U).

The following figure shows how the inversion method works for the exponential distribution.

0 1 2 3 4 5

0

1

This algorithm is so simple that inversion is certainly the method of choice if the inverse CDF
is available in closed form. This is the case e.g. for the exponential and the Cauchy distribution.

The inversion method also has other special advantages that make it even more attractive for
simulation purposes. It preserves the structural properties of the underlying uniform pseudo-
random number generator. Consequently it can be used, e.g., for variance reduction techniques,
it is easy to sample from truncated distributions, from marginal distributions, and from order

146 UNURAN User Manual

statistics. Moreover, the quality of the generated random variables depends only on the underly-
ing uniform (pseudo-) random number generator. Another important advantage of the inversion
method is that we can easily characterize its performance. To generate one random variate we
always need exactly one uniform variate and one evaluation of the inverse CDF. So its speed
mainly depends on the costs for evaluating the inverse CDF. Hence inversion is often considered
as the method of choice in the simulation literature.

Unfortunately computing the inverse CDF is, for many important standard distributions (e.g.
for normal, student, gamma, and beta-distributions), comparatively difficult and slow. Often
no such routines are available in standard programming libraries. Then numerical methods
for inverting the CDF are necessary, e.g. Newton’s method. Such procedures, however, have
the disadvantage that they may be slow or not exact, i.e. they compute approximate values.
The methods NINV (see Section 5.3.7 [NINV], page 76) and HINV (see Section 5.3.3 [HINV],
page 71) of UNURAN are numerical inversion methods. Both require the CDF of the desired
distribution. As the CDF is quite complicated and slow for many distributions this implies either
that the generation is very slow (NINV) or a very slow setup step and large tables are necessary
(HINV). Sometimes the CDF of a distribution is not available and alternative methods like the
rejection method (see Section A.2 [Rejection], page 146) must be used.

A.2 The Rejection Method

The rejection method, often called acceptance-rejection method, has been suggested by John
von Neumann in 1951. Since then it has proven to be the most flexible and most efficient method
to generate variates from continuous distributions.

We explain the rejection principle first for the density f(x) = sin(x)/2 on the interval (0, π).
To generate random variates from this distribution we also can sample random points that are
uniformly distributed in the region between the graph of f(x) and the x -axis, i.e., the shaded
region in the below figure.

In general this is not a trivial task but in this example we can easily use the rejection trick:
Sample a random point (X, Y) uniformly in the bounding rectangle (0, π)× (0, 0.5). This is easy
since each coordinate can be sampled independently from the respective uniform distributions
U(0, π) and U(0, 0.5). Whenever the point falls into the shaded region below the graph (indicated
by dots in the figure), i.e., when Y < sin(X)/2 , we accept it and return X as a random variate
from the distribution with density f(x). Otherwise we have to reject the point (indicated by
small circles in the figure), and try again.

It is quite clear that this idea works for every distribution with a bounded density on a
bounded domain. Moreover, we can use this procedure with any multiple of the density, i.e.,
with any positive bounded function with bounded integral and it is not necessary to know the

Appendix A: A Short Introduction to Random Variate Generation 147

integral of this function. So we use the term density in the sequel for any positive function with
bounded integral.

From the figure we can conclude that the performance of a rejection algorithm depends
heavily on the area of the enveloping rectangle. Moreover, the method does not work if the
target distribution has infinite tails (or is unbounded). Hence non-rectangular shaped regions
for the envelopes are important and we have to solve the problem of sampling points uniformly
from such domains. Looking again at the example above we notice that the x -coordinate of
the random point (X, Y) was sampled by inversion from the uniform distribution on the domain
of the given density. This motivates us to replace the density of the uniform distribution by
the (multiple of a) density h(x) of some other appropriate distribution. We only have to take
care that it is chosen such that it is always an upper bound, i.e., h(x) ≥ f(x) for all x in the
domain of the distribution. To generate the pair (X, Y) we generate X from the distribution
with density proportional to h(x) and Y uniformly between 0 and h(X). The first step (generate
X) is usually done by inversion (see Section A.1 [Inversion], page 145).

Thus the general rejection algorithm for a hat h(x) with inverse CDF H−1 consists of the
following steps:
1. Generate a U(0, 1) random number U.

2. Set X to H−1(U).
3. Generate a U(0, 1) random number V.

4. Set Y to V h(X).
5. If Y ≤ f(X) accept X as the random variate.
6. Else try again.

If the evaluation of the density f(x) is expensive (i.e., time consuming) it is possible to use
a simple lower bound of the density as so called squeeze function s(x) (the triangular shaped
function in the above figure is an example for such a squeeze). We can then accept X when
Y ≤ s(X) and can thus often save the evaluation of the density.

We have seen so far that the rejection principle leads to short and simple generation algo-
rithms. The main practical problem to apply the rejection algorithm is the search for a good
fitting hat function and for squeezes. We do not discuss these topics here as they are the
heart of the different automatic algorithms implemented in UNURAN. Information about the
construction of hat and squeeze can therefore be found in the descriptions of the methods.

The performance characteristics of rejection algorithms mainly depend on the fit of the hat
and the squeeze. It is not difficult to prove that:
• The expected number of trials to generate one variate is the ratio between the area below

the hat and the area below the density.
• The expected number of evaluations of the density necessary to generate one variate is

equal to the ratio between the area below the hat and the area below the density, when no
squeeze is used. Otherwise, when a squeeze is given it is equal to the ratio between the area
between hat and squeeze and the area below the hat.

• The sqhratio (i.e., the ratio between the area below the squeeze and the area below the
hat) used in some of the UNURAN methods is easy to compute. It is useful as its reciprocal
is an upper bound for the expected number of trials of the rejection algoritm. The expected
number of evaluations of the density is bounded by (1/sqhratio)− 1.

A.3 The Composition Method

The composition method is an important principle to facilitate and speed up random variate
generation. The basic idea is simple. To generate random variates with a given density we

148 UNURAN User Manual

first split the domain of the density into subintervals. Then we select one of these randomly
with probabilities given by the area below the density in the respective subintervals. Finally we
generate a random variate from the density of the selected part by inversion and return it as
random variate of the full distribution.

Composition can be combined with rejection. Thus it is possible to decompose the domain
of the distribution into subintervals and to construct hat and squeeze functions seperatly in
every subinterval. The area below the hat must be determined in every subinterval. Then the
Composition rejection algorithm contains the following steps:

1. Generate the index J of the subinterval as the realisation of a discrete random variate with
probabilities proportional to the area below the hat.

2. Generate a random variate X proportional to the hat in interval J.

3. Generate the U(0, f(X)) random number Y.

4. If Y ≤ f(X) accept X as random variate.

5. Else start again with generating the index J .

The first step can be done in constant time (i.e., independent of the number of chosen
subintervals) by means of the indexed search method (see Section A.6 [IndexedSearch], page 150).

It is possible to reduce the number of uniform random numbers required in the above algo-
rithm by recycling the random numbers used in Step 1 and additionally by applying the principle
of immediate acceptance. For details see [HLD04: Sect. 3.1] .

A.4 The Ratio-of-Uniforms Method

The construction of an appropriate hat function for the given density is the crucial step for
constructing rejection algorithms. Equivalently we can try to find an appropriate envelope for the
region between the graph of the density and the x -axis, such that we can easily sample uniformly
distributed random points. This task could become easier if we can find transformations that
map the region between the density and the axis into a region of more suitable shape (for
example into a bounded region).

As a first example we consider the following simple algorithm for the Cauchy distribution.

1. Generate a U(−1, 1) random number U and a U(0, 1) random number V.

2. If U2 + V 2 ≤ 1 accept X = U/V as a Cauchy random variate.

3. Else try again.

It is possible to prove that the above algorithm indeed generates Cauchy random variates.
The fundamental principle behind this algorithm is the fact that the region below the density
is mapped by the transformation

(X, Y) 7→ (U, V) = (2 X
√

Y , 2
√

Y)

into a half-disc in such a way that the ratio between the area of the image to the area of the
preimage is constant. This is due to the fact that that the Jacobian of this transformation is
constant.

Appendix A: A Short Introduction to Random Variate Generation 149

u

v

The above example is a special case of a more general principle, called the Ratio-of-uniforms
(RoU) method. It is based on the fact that for a random variable X with density f(x) and some
constant µ we can generate X from the desired density by calculating X = U/V + µ for a pair
(U, V) uniformly distributed in the set

Af = { (u, v): 0 < v ≤
√

f(u/v + µ)} .

For most distributions it is best to set the constant µ equal to the mode of the distribution.
For sampling random points uniformly distributed in Af rejection from a convenient enveloping
region is used, usually the minimal bounding rectangle, i.e., the smallest possible rectangle that
contains Af (see the above figure). It is given by (u−, u+)× (0, v+) where

v+ = sup
bl<x<br

√
f(x),

u− = inf
bl<x<br

(x− µ)
√

f(x),

u+ = sup
bl<x<br

(x− µ)
√

f(x).

Then the ratio-of-uniforms method consists of the following simple steps:
1. Generate a U(u−, u+) random number U and a U(0, v+) random number V.

2. Set X to U/V + µ.

3. If V 2 ≤ f(X) accept X as the random variate.
4. Else try again.

To apply the ratio-of-uniforms algorithm to a certain density we have to solve the simple
optimization problems in the definitions above to obtain the design constants u−, u+, and v+.
This simple algorithm works for all distributions with bounded densities that have subquadratic
tails (i.e., tails like 1/x2 or lower). For most standard distributions it has quite good rejection
constants. (E.g. 1.3688 for the normal and 1.4715 for the exponential distribution.)

Nevertheless, we use more sophisticated method that construct better fitting envelopes, like
method AROU (see Section 5.3.1 [AROU], page 67), or even avoid the computation of these
design constants and thus have almost no setup, like method SROU (see Section 5.3.9 [SROU],
page 80).

150 UNURAN User Manual

A.5 Inversion for Discrete Distributions

We have already presented the idea of the inversion method to generate from continuous
random variables (see Section A.1 [Inversion], page 145). For a discrete random variable X we
can write it mathematically in the same way:

X = F−1(U),

where F is the CDF of the desired distribution and U is a uniform U(0, 1) random number.
The difference compared to the continuous case is that F is now a step-function. The following
figure illustrates the idea of discrete inversion for a simple distribution.

0 1 2 3 4 5
0

1

To realize this idea on a computer we have to use a search algorithm. For the simplest version
called Sequential Search the CDF is computed on-the-fly as sum of the probabilities p(k) , since
this is usually much cheaper than computing the CDF directly. It is obvious that the basic form
of the search algorithm only works for discrete random variables with probability mass functions
p(k) for nonnegative k. The sequential search algorithm consists of the following basic steps:
1. Generate a U(0, 1) random number U.

2. Set X to 0 and P to p(0).
3. Do while U > P

4. Set X to X + 1 and P to P + p(X).
5. Return X.

With the exception of some very simple discrete distributions, sequential search algorithms
become very slow as the while-loop has to be repeated very often. The expected number of
iterations, i.e., the number of comparisons in the while condition, is equal to the expectation
of the distribution plus 1. It can therefore become arbitrary large or even infinity if the tail of
the distribution is very heavy. Another serious problem can be critical round-off errors due to
summing up many probabilities p(k). To speed up the search procedure it is best to use indexed
search.

A.6 Indexed Search (Guide Table Method)

The idea to speed up the sequential search algorithm is easy to understand. Instead of
starting always at 0 we store a table of size C with starting points for our search. For this table

Appendix A: A Short Introduction to Random Variate Generation 151

we compute F−1(U) for C equidistributed values of U, i.e., for ui = i/C, i = 0, ..., C − 1. Such
a table is called guide table or hash table. Then it is easy to prove that for every U in (0, 1) the
guide table entry for k = floor(UC) is bounded by F−1(U). This shows that we can really start
our sequential search procedure from the table entry for k and the index k of the correct table
entry can be found rapidly by means of the truncation operation.

The two main differences between indexed search and sequential search are that we start
searching at the number determined by the guide table, and that we have to compute and
store the cumulative probabilities in the setup as we have to know the cumulative probability
for the starting point of the search algorithm. The rounding problems that can occur in the
sequential search algorithm can occur here as well. Compared to sequential search we have now
the obvious drawback of a slow setup. The computation of the cumulative probabilities grows
linear with the size of the domain of the distribution L. What we gain is really high speed as the
marginal execution time of the sampling algorithm becomes very small. The expected number of
comparisons is bounded by 1 +L/C. This shows that there is a trade-off between speed and the
size of the guide table. Cache-effects in modern computers will however slow down the speed-up
for really large table sizes. Thus we recommend to use a guide table that is about two times
larger than the probability vector to obtain optimal speed.

152 UNURAN User Manual

Appendix B: Glossary 153

Appendix B Glossary

CDF cumulative distribution function

HR hazard rate (or failure rate)

PDF probability density function

dPDF derivative (gradient) of probability density function

PMF probability mass function

PV (finite) probability vector

U(a, b) continuous uniform distribution on the interval (a, b)

T-concave
T c-concave

a function f(x) is called T-convace if the transformed function T(f(x)) is concave.
We only deal with transformations T c, where

c = 0 T(x) = log(x)

c = -0.5 T(x) = -1/sqrt(x)

c != 0 T(x) = sign(x) * x^c

154 UNURAN User Manual

Appendix C: Bibliography 155

Appendix C Bibliography

Standard Distributions

[JKKa92] N.L. Johnson, S. Kotz, and A.W. Kemp (1992). Univariate Discrete Distribu-
tions, 2nd edition, John Wiley & Sons, Inc., New York.

[JKBb94] N.L. Johnson, S. Kotz, and N. Balakrishnan (1994). Continuous Univariate
Distributions, Volume 1, 2nd edition, John Wiley & Sons, Inc., New York.

[JKBc95] N.L. Johnson, S. Kotz, and N. Balakrishnan (1995). Continuous Univariate
Distributions, Volume 2, 2nd edition, John Wiley & Sons, Inc., New York.

[JKBd97] N.L. Johnson, S. Kotz, and N. Balakrishnan (1997). Discrete Multivariate
Distributions, John Wiley & Sons, Inc., New York.

[KBJe00] S. Kotz, N. Balakrishnan, and N.L. Johnson (2000). Continuous Multivariate
Distributions, Volume 1: Models and Applications, John Wiley & Sons, Inc., New
York.

Universal Methods – Surveys

[HLD04] W. Hörmann, J. Leydold, and G. Derflinger (2004). Automatic Nonuniform
Random Variate Generation, Springer, Berlin.

Universal Methods

[AJa93] J.H. Ahrens (1993). Sampling from general distributions by suboptimal division of
domains, Grazer Math. Berichte 319, 30pp.

[AJa95] J.H. Ahrens (1995). An one-table method for sampling from continuous and dis-
crete distributions, Computing 54(2), pp. 127-146.

[CAa74] H.C. Chen and Y. Asau (1974). On generating random variates from an empirical
distribution, AIIE Trans. 6, pp. 163-166.

[DLa86] L. Devroye (1986). Non-Uniform Random Variate Generation, Springer Verlag,
New York.

[GWa92] W.R. Gilks and P. Wild (1992). Adaptive rejection sampling for Gibbs sampling,
Applied Statistics 41, pp. 337-348.

[HWa95] W. Hörmann (1995). A rejection technique for sampling from T-concave distribu-
tions, ACM Trans. Math. Software 21(2), pp. 182-193.

[HDa96] W. Hörmann and G. Derflinger (1996). Rejection-inversion to generate vari-
ates from monotone discrete distributions, ACM TOMACS 6(3), 169-184.

[HLa00] W. Hörmann and J. Leydold (2000). Automatic random variate generation
for simulation input. In: J.A. Joines, R. Barton, P. Fishwick, K. Kang (eds.),
Proceedings of the 2000 Winter Simulation Conference, pp. 675-682.

[LJa00] J. Leydold (2000). Automatic Sampling with the Ratio-of-Uniforms Method, ACM
Trans. Math. Software 26(1), pp. 78-98.

[LJa01] J. Leydold (2001). A simple universal generator for continuous and discrete uni-
variate T-concave distributions, ACM Trans. Math. Software 27(1), pp. 66-82.

156 UNURAN User Manual

[LJa02] J. Leydold (2003). Short universal generators via generalized ratio-of-uniforms
method, Math. Comp. 72(243), pp. 1453-1471.

[WGS91] J.C. Wakefield, A.E. Gelfand, and A.F.M. Smith (1992). Efficient genera-
tion of random variates via the ratio-of-uniforms method, Statist. Comput. 1(2),
pp. 129-133.

[WAa77] A.J. Walker (1977). An efficient method for generating discrete random variables
with general distributions, ACM Trans. Math. Software 3, pp. 253-256.

Special Generators

[ADa74] J.H. Ahrens, U. Dieter (1974). Computer methods for sampling from gamma,
beta, Poisson and binomial distributions, Computing 12, 223-246.

[ADa82] J.H. Ahrens, U. Dieter (1982). Generating gamma variates by a modified rejec-
tion technique, Communications of the ACM 25, 47-54.

[ADb82] J.H. Ahrens, U. Dieter (1982). Computer generation of Poisson deviates from
modified normal distributions, ACM Trans. Math. Software 8, 163-179.

[BMa58] G.E.P. Box and M.E. Muller (1958). A note on the generation of random
normal deviates, Annals Math. Statist. 29, 610-611.

[CHa77] R.C.H. Cheng (1977). The Generation of Gamma Variables with Non-Integral
Shape Parameter, Appl. Statist. 26(1), 71-75.

[HDa90] W. Hörmann and G. Derflinger (1990). The ACR Method for generating
normal random variables, OR Spektrum 12, 181-185.

[KAa81] A.W. Kemp (1981). Efficient generation of logarithmically distributed pseudo-
random variables, Appl. Statist. 30, 249-253.

[KRa76] A.J. Kinderman and J.G. Ramage (1976). Computer Generation of Normal
Random Variables, J. Am. Stat. Assoc. 71(356), 893 - 898.

[MJa87] J.F. Monahan (1987). An algorithm for generating chi random variables, ACM
Trans. Math. Software 13, 168-172.

[MGa62] G. Marsaglia (1962). Improving the Polar Method for Generating a Pair of Ran-
dom Variables, Boeing Sci. Res. Lab., Seattle, Washington.

[STa89] E. Stadlober (1989). Sampling from Poisson, binomial and hypergeometric dis-
tributions: ratio of uniforms as a simple and fast alternative, Bericht 303, Math.
Stat. Sektion, Forschungsgesellschaft Joanneum, Graz.

[ZHa94] H. Zechner (1994). Efficient sampling from continuous and discrete unimodal
distributions, Pd.D. Thesis, 156 pp., Technical University Graz, Austria.

Other references

[HJa61] R. Hooke and T.A. Jeeves (1961). Direct Search Solution of Numerical and
Statistical Problems, Journal of the ACM, Vol. 8, April 1961, pp. 212-229.

Appendix D: Function Index 157

Appendix D Function Index

_unur_tdr_is_ARS_running . 92

F
FALSE . 143

I
INT_MAX . 143
INT_MIN . 143

T
TRUE . 143

U
unur_arou_chg_verify . 69
unur_arou_get_hatarea . 69
unur_arou_get_sqhratio . 68
unur_arou_get_squeezearea . 69
unur_arou_new. 68
unur_arou_set_center . 69
unur_arou_set_cpoints . 69
unur_arou_set_darsfactor . 68
unur_arou_set_guidefactor . 69
unur_arou_set_max_segments 69
unur_arou_set_max_sqhratio 68
unur_arou_set_pedantic . 69
unur_arou_set_usecenter . 69
unur_arou_set_usedars . 68
unur_arou_set_verify . 69
unur_auto_new. 64
unur_auto_set_logss . 64
unur_chg_debug . 137
unur_chg_urng . 119
unur_chg_urng_aux . 119
unur_chgto_urng_aux_default 119
unur_cstd_chg_pdfparams . 71
unur_cstd_chg_truncated . 71
unur_cstd_new. 70
unur_cstd_set_variant . 70
unur_dari_chg_domain . 110
unur_dari_chg_mode . 110
unur_dari_chg_pmfparams . 110
unur_dari_chg_pmfsum . 110
unur_dari_chg_verify . 109
unur_dari_new . 109
unur_dari_reinit . 109
unur_dari_set_cpfactor . 109
unur_dari_set_squeeze . 109
unur_dari_set_tablesize . 109
unur_dari_set_verify . 109
unur_dari_upd_mode . 110
unur_dari_upd_pmfsum . 110
unur_dau_new. 111
unur_dau_set_urnfactor . 111
UNUR_DEBUG_ADAPT . 137
UNUR_DEBUG_ALL . 137

UNUR_DEBUG_INIT . 137
UNUR_DEBUG_OFF . 137
UNUR_DEBUG_SAMPLE . 137
UNUR_DEBUG_SETUP . 137
unur_dgt_new. 112
unur_dgt_set_guidefactor . 112
unur_dgt_set_variant . 112
unur_distr_<dname> . 121
unur_distr_beta . 122
unur_distr_binomial . 129
unur_distr_cauchy . 122
unur_distr_cemp_get_data . 51
unur_distr_cemp_new . 51
unur_distr_cemp_read_data . 51
unur_distr_cemp_set_data . 51
unur_distr_chi . 123
unur_distr_chisquare . 123
unur_distr_cont_eval_cdf . 45
unur_distr_cont_eval_dpdf . 45
unur_distr_cont_eval_hr . 48
unur_distr_cont_eval_pdf . 45
unur_distr_cont_get_cdf . 45
unur_distr_cont_get_cdfstr 46
unur_distr_cont_get_domain 47
unur_distr_cont_get_dpdf . 45
unur_distr_cont_get_dpdfstr 46
unur_distr_cont_get_hr . 47
unur_distr_cont_get_hrstr . 48
unur_distr_cont_get_mode . 48
unur_distr_cont_get_pdf . 45
unur_distr_cont_get_pdfarea 49
unur_distr_cont_get_pdfparams 46
unur_distr_cont_get_pdfstr 46
unur_distr_cont_get_truncated 47
unur_distr_cont_new . 44
unur_distr_cont_set_cdf . 45
unur_distr_cont_set_cdfstr 46
unur_distr_cont_set_domain 47
unur_distr_cont_set_dpdf . 45
unur_distr_cont_set_hr . 47
unur_distr_cont_set_hrstr . 48
unur_distr_cont_set_mode . 48
unur_distr_cont_set_pdf . 45
unur_distr_cont_set_pdfarea 48
unur_distr_cont_set_pdfparams 46
unur_distr_cont_set_pdfstr 46
unur_distr_cont_upd_mode . 48
unur_distr_cont_upd_pdfarea 48
unur_distr_corder_eval_cdf 50
unur_distr_corder_eval_dpdf 50
unur_distr_corder_eval_pdf 50
unur_distr_corder_get_cdf . 49
unur_distr_corder_get_distribution 49
unur_distr_corder_get_domain 50
unur_distr_corder_get_dpdf 49
unur_distr_corder_get_mode 51
unur_distr_corder_get_pdf . 49
unur_distr_corder_get_pdfarea 51
unur_distr_corder_get_pdfparams 50
unur_distr_corder_get_rank 49
unur_distr_corder_get_truncated 50

158 UNURAN User Manual

unur_distr_corder_new . 49
unur_distr_corder_set_domain 50
unur_distr_corder_set_mode 50
unur_distr_corder_set_pdfarea 51
unur_distr_corder_set_pdfparams 50
unur_distr_corder_set_rank 49
unur_distr_corder_upd_mode 50
unur_distr_corder_upd_pdfarea 51
unur_distr_correlation . 131
unur_distr_cvec_eval_dpdf . 53
unur_distr_cvec_eval_pdf . 53
unur_distr_cvec_get_center 56
unur_distr_cvec_get_cholesky 54
unur_distr_cvec_get_covar . 54
unur_distr_cvec_get_covar_inv 54
unur_distr_cvec_get_dpdf . 53
unur_distr_cvec_get_marginal 55
unur_distr_cvec_get_mean . 53
unur_distr_cvec_get_mode . 56
unur_distr_cvec_get_pdf . 52
unur_distr_cvec_get_pdfparams 56
unur_distr_cvec_get_pdfvol 56
unur_distr_cvec_get_rankcorr 54
unur_distr_cvec_get_stdmarginal 55
unur_distr_cvec_new . 52
unur_distr_cvec_set_center 56
unur_distr_cvec_set_covar . 53
unur_distr_cvec_set_dpdf . 52
unur_distr_cvec_set_marginal_array 55
unur_distr_cvec_set_marginal_list 55
unur_distr_cvec_set_marginals 54
unur_distr_cvec_set_mean . 53
unur_distr_cvec_set_mode . 56
unur_distr_cvec_set_pdf . 52
unur_distr_cvec_set_pdfparams 55
unur_distr_cvec_set_pdfvol 56
unur_distr_cvec_set_rankcorr 54
unur_distr_cvec_set_stdmarginal_array 55
unur_distr_cvec_set_stdmarginal_list 55
unur_distr_cvec_set_stdmarginals 54
unur_distr_cvemp_get_data . 57
unur_distr_cvemp_new . 57
unur_distr_cvemp_read_data 57
unur_distr_cvemp_set_data . 57
unur_distr_discr_eval_cdf . 59
unur_distr_discr_eval_pmf . 59
unur_distr_discr_eval_pv . 59
unur_distr_discr_get_cdfstr 59
unur_distr_discr_get_domain 60
unur_distr_discr_get_mode . 61
unur_distr_discr_get_pmfparams 60
unur_distr_discr_get_pmfstr 59
unur_distr_discr_get_pmfsum 61
unur_distr_discr_get_pv . 59
unur_distr_discr_make_pv . 58
unur_distr_discr_new . 58
unur_distr_discr_set_cdf . 59
unur_distr_discr_set_cdfstr 59
unur_distr_discr_set_domain 60
unur_distr_discr_set_mode . 60
unur_distr_discr_set_pmf . 59
unur_distr_discr_set_pmfparams 60
unur_distr_discr_set_pmfstr 59
unur_distr_discr_set_pmfsum 61
unur_distr_discr_set_pv . 58

unur_distr_discr_upd_mode . 60
unur_distr_discr_upd_pmfsum 61
unur_distr_exponential . 123
unur_distr_extremeI . 123
unur_distr_extremeII . 124
unur_distr_free . 43
unur_distr_gamma . 124
unur_distr_geometric . 129
unur_distr_get_dim . 44
unur_distr_get_name . 43
unur_distr_get_type . 44
unur_distr_hypergeometric 129
unur_distr_is_cemp . 44
unur_distr_is_cont . 44
unur_distr_is_cvec . 44
unur_distr_is_cvemp . 44
unur_distr_is_discr . 44
unur_distr_is_matr . 44
unur_distr_laplace . 125
unur_distr_logarithmic . 130
unur_distr_logistic . 125
unur_distr_lomax . 125
unur_distr_matr_get_dim . 58
unur_distr_matr_new . 57
unur_distr_multinormal . 128
unur_distr_negativebinomial 130
unur_distr_normal . 126
unur_distr_pareto . 126
unur_distr_poisson . 130
unur_distr_powerexponential 126
unur_distr_rayleigh . 127
unur_distr_set_name . 43
unur_distr_student . 127
unur_distr_triangular . 127
unur_distr_uniform . 127
unur_distr_weibull . 128
unur_dsrou_chg_cdfatmode . 114
unur_dsrou_chg_domain . 113
unur_dsrou_chg_mode . 113
unur_dsrou_chg_pmfparams . 113
unur_dsrou_chg_pmfsum . 114
unur_dsrou_chg_verify . 113
unur_dsrou_new . 113
unur_dsrou_reinit . 113
unur_dsrou_set_cdfatmode . 113
unur_dsrou_set_verify . 113
unur_dsrou_upd_mode . 113
unur_dsrou_upd_pmfsum . 114
unur_dss_new. 114
unur_dstd_chg_pmfparams . 115
unur_dstd_new . 115
unur_dstd_set_variant . 115
unur_empk_chg_smoothing . 100
unur_empk_chg_varcor . 100
unur_empk_new. 99
unur_empk_set_beta . 100
unur_empk_set_kernel . 99
unur_empk_set_kernelgen . 99
unur_empk_set_positive . 100
unur_empk_set_smoothing . 100
unur_empk_set_varcor . 100
unur_empl_new . 101
UNUR_ERR_COMPILE . 135
UNUR_ERR_COOKIE . 135
UNUR_ERR_DISTR_DATA . 134

Appendix D: Function Index 159

UNUR_ERR_DISTR_DOMAIN . 134
UNUR_ERR_DISTR_GEN . 134
UNUR_ERR_DISTR_GET . 134
UNUR_ERR_DISTR_INVALID . 134
UNUR_ERR_DISTR_NPARAMS . 134
UNUR_ERR_DISTR_PROP . 134
UNUR_ERR_DISTR_REQUIRED . 134
UNUR_ERR_DISTR_SET . 134
UNUR_ERR_DISTR_UNKNOWN . 134
UNUR_ERR_DOMAIN . 135
UNUR_ERR_FSTR_DERIV . 135
UNUR_ERR_FSTR_SYNTAX . 135
UNUR_ERR_GEN. 134
UNUR_ERR_GEN_CONDITION . 134
UNUR_ERR_GEN_DATA . 134
UNUR_ERR_GEN_INVALID . 134
UNUR_ERR_GEN_SAMPLING . 134
UNUR_ERR_GENERIC . 135
UNUR_ERR_INF. 135
UNUR_ERR_MALLOC . 135
UNUR_ERR_NAN. 135
UNUR_ERR_NULL . 135
UNUR_ERR_PAR_INVALID . 134
UNUR_ERR_PAR_SET . 134
UNUR_ERR_PAR_VARIANT . 134
UNUR_ERR_ROUNDOFF . 135
UNUR_ERR_SHOULD_NOT_HAPPEN 135
UNUR_ERR_SILENT . 135
UNUR_ERR_STR. 134
UNUR_ERR_STR_INVALID . 135
UNUR_ERR_STR_SYNTAX . 135
UNUR_ERR_STR_UNKNOWN . 135
unur_errno . 135
unur_free . 63
unur_get_default_urng . 118
unur_get_default_urng_aux 118
unur_get_dimension . 63
unur_get_distr . 63
unur_get_genid . 63
unur_get_stream . 136
unur_get_strerror . 136
unur_get_urng . 119
unur_get_urng_aux . 119
unur_hinv_chg_truncated . 73
unur_hinv_estimate_error . 74
unur_hinv_eval_approxinvcdf 73
unur_hinv_get_n_intervals . 73
unur_hinv_new. 72
unur_hinv_set_boundary . 73
unur_hinv_set_cpoints . 72
unur_hinv_set_guidefactor . 73
unur_hinv_set_max_intervals 73
unur_hinv_set_order . 72
unur_hinv_set_u_resolution 72
unur_hrb_chg_verify . 74
unur_hrb_new . 74
unur_hrb_set_upperbound . 74
unur_hrb_set_verify . 74
unur_hrd_chg_verify . 75
unur_hrd_new . 75
unur_hrd_set_verify . 75
unur_hri_chg_verify . 76
unur_hri_new . 75
unur_hri_set_p0 . 75
unur_hri_set_verify . 76

UNUR_INFINITY . 143
unur_init . 63
unur_mcorr_new . 116
unur_ninv_chg_max_iter . 77
unur_ninv_chg_pdfparams . 78
unur_ninv_chg_start . 77
unur_ninv_chg_table . 77
unur_ninv_chg_truncated . 78
unur_ninv_chg_x_resolution 77
unur_ninv_new. 76
unur_ninv_set_max_iter . 77
unur_ninv_set_start . 77
unur_ninv_set_table . 77
unur_ninv_set_usenewton . 77
unur_ninv_set_useregula . 76
unur_ninv_set_x_resolution 77
unur_nrou_chg_verify . 80
unur_nrou_new. 79
unur_nrou_set_center . 79
unur_nrou_set_u . 79
unur_nrou_set_v . 79
unur_nrou_set_verify . 80
unur_run_tests . 139
unur_sample_cont . 63
unur_sample_discr . 63
unur_sample_matr . 63
unur_sample_vec . 63
unur_set_debug . 137
unur_set_default_debug . 137
unur_set_default_urng . 118
unur_set_default_urng_aux 118
unur_set_stream . 136
unur_set_urng . 118
unur_set_urng_aux . 119
unur_srou_chg_cdfatmode . 82
unur_srou_chg_domain . 82
unur_srou_chg_mode . 82
unur_srou_chg_pdfarea . 83
unur_srou_chg_pdfatmode . 82
unur_srou_chg_pdfparams . 82
unur_srou_chg_verify . 82
unur_srou_new. 81
unur_srou_reinit . 81
unur_srou_set_cdfatmode . 81
unur_srou_set_pdfatmode . 81
unur_srou_set_r . 81
unur_srou_set_usemirror . 82
unur_srou_set_usesqueeze . 81
unur_srou_set_verify . 82
unur_srou_upd_mode . 82
unur_srou_upd_pdfarea . 83
unur_ssr_chg_cdfatmode . 85
unur_ssr_chg_domain . 85
unur_ssr_chg_mode . 85
unur_ssr_chg_pdfarea . 85
unur_ssr_chg_pdfatmode . 85
unur_ssr_chg_pdfparams . 84
unur_ssr_chg_verify . 84
unur_ssr_new . 84
unur_ssr_reinit . 84
unur_ssr_set_cdfatmode . 84
unur_ssr_set_pdfatmode . 84
unur_ssr_set_usesqueeze . 84
unur_ssr_set_verify . 84
unur_ssr_upd_mode . 85

160 UNURAN User Manual

unur_ssr_upd_pdfarea . 85
unur_str2distr . 29
unur_str2gen . 29
UNUR_SUCCESS (0x0u) . 133
unur_tabl_chg_verify . 89
unur_tabl_get_hatarea . 87
unur_tabl_get_n_intervals . 88
unur_tabl_get_sqhratio . 87
unur_tabl_get_squeezearea . 88
unur_tabl_new. 86
unur_tabl_set_areafraction 88
unur_tabl_set_boundary . 88
unur_tabl_set_darsfactor . 87
unur_tabl_set_guidefactor . 88
unur_tabl_set_max_intervals 88
unur_tabl_set_max_sqhratio 87
unur_tabl_set_nstp . 88
unur_tabl_set_slopes . 88
unur_tabl_set_usedars . 87
unur_tabl_set_variant_splitmode 87
unur_tabl_set_verify . 89
unur_tdr_chg_truncated . 91
unur_tdr_chg_verify . 93
unur_tdr_eval_invcdfhat . 93
unur_tdr_get_hatarea . 92
unur_tdr_get_sqhratio . 91
unur_tdr_get_squeezearea . 92
unur_tdr_new . 90
unur_tdr_set_c . 90
unur_tdr_set_center . 92
unur_tdr_set_cpoints . 92
unur_tdr_set_darsfactor . 91
unur_tdr_set_guidefactor . 92
unur_tdr_set_max_intervals 92
unur_tdr_set_max_sqhratio . 91
unur_tdr_set_pedantic . 93
unur_tdr_set_usecenter . 92
unur_tdr_set_usedars . 90
unur_tdr_set_usemode . 92
unur_tdr_set_variant_gw . 90
unur_tdr_set_variant_ia . 90

unur_tdr_set_variant_ps . 90
unur_tdr_set_verify . 93
unur_test_chi2 . 140
unur_test_correlation . 141
unur_test_count_urn . 140
unur_test_moments . 140
unur_test_printsample . 139
unur_test_quartiles . 141
unur_test_timing . 139
unur_test_timing_exponential 140
unur_test_timing_total . 140
unur_test_timing_uniform . 140
unur_unif_new . 116
unur_use_urng_aux_default 119
unur_utdr_chg_domain . 95
unur_utdr_chg_mode . 95
unur_utdr_chg_pdfarea . 95
unur_utdr_chg_pdfatmode . 95
unur_utdr_chg_pdfparams . 95
unur_utdr_chg_verify . 95
unur_utdr_new. 94
unur_utdr_reinit . 94
unur_utdr_set_cpfactor . 94
unur_utdr_set_deltafactor . 94
unur_utdr_set_pdfatmode . 94
unur_utdr_set_verify . 95
unur_utdr_upd_mode . 95
unur_utdr_upd_pdfarea . 95
unur_vempk_chg_smoothing . 105
unur_vempk_chg_varcor . 106
unur_vempk_new . 105
unur_vempk_set_smoothing . 105
unur_vempk_set_varcor . 106
unur_vmt_new. 101
unur_vnrou_chg_verify . 103
unur_vnrou_new . 103
unur_vnrou_set_r . 103
unur_vnrou_set_u . 103
unur_vnrou_set_v . 103
unur_vnrou_set_verify . 103

	UNURAN -- Universal Non-Uniform RANdom number generators
	Introduction
	Usage of this document
	Installation
	Using the library
	Concepts of UNURAN
	Contact the authors

	Examples
	As short as possible
	As short as possible (String API)
	Select a method
	Select a method (String API)
	Arbitrary distributions
	Arbitrary distributions (String API)
	Change parameters of the method
	Change parameters of the method (String API)
	Change uniform random generator
	Change uniform random generator (String API)
	Sample pairs of antithetic random variates
	Sample pairs of antithetic random variates (String API)
	More examples

	String Interface
	Syntax of String Interface
	Distribution String
	Keys for Distribution String

	Function String
	Method String
	Keys for Method String

	Uniform RNG String

	Handling distribution objects
	Functions for all kinds of distribution objects
	Continuous univariate distributions
	Continuous univariate order statistics
	Continuous empirical univariate distributions
	Continuous multivariate distributions
	Continuous empirical multivariate distributions
	MATRix distributions
	Discrete univariate distributions

	Methods for generating non-uniform random variates
	Routines for all generator objects
	AUTO -- Select method automatically
	Methods for continuous univariate distributions
	AROU -- Automatic Ratio-Of-Uniforms method
	CSTD -- Continuous STandarD distributions
	HINV -- Hermite interpolation based INVersion of CDF
	HRB -- Hazard Rate Bounded
	HRD -- Hazard Rate Decreasing
	HRI -- Hazard Rate Increasing
	NINV -- Numerical INVersion
	NROU -- Naive Ratio-Of-Uniforms method
	SROU -- Simple Ratio-Of-Uniforms method
	SSR -- Simple Setup Rejection
	TABL -- a TABLe method with piecewise constant hats
	TDR -- Transformed Density Rejection
	UTDR -- Universal Transformed Density Rejection

	Methods for continuous empirical univariate distributions
	EMPK -- EMPirical distribution with Kernel smoothing
	EMPL -- EMPirical distribution with Linear interpolation

	Methods for continuous multivariate distributions
	VMT -- Vector Matrix Transformation
	VNROU -- Multivariate Naive Ratio-Of-Uniforms method

	Methods for continuous empirical multivariate distributions
	VEMPK -- (Vector) EMPirical distribution with Kernel smoothing

	Methods for discrete univariate distributions
	DARI -- discrete automatic rejection inversion
	DAU -- (Discrete) Alias-Urn method
	DGT -- (Discrete) Guide Table method (indexed search)
	DSROU -- Discrete Simple Ratio-Of-Uniforms method
	DSS -- (Discrete) Sequential Search method
	DSTD -- Discrete STandarD distributions

	Methods for random matrices
	MCORR -- Random CORRelation matrix

	Methods for uniform univariate distributions
	UNIF -- wrapper for UNIForm random number generator

	Using uniform random number generators
	UNURAN Library of standard distributions
	UNURAN Library of continuous univariate distributions
	beta -- Beta distribution
	cauchy -- Cauchy distribution
	chi -- Chi distribution
	chisquare -- Chisquare distribution
	exponential -- Exponential distribution
	extremeI -- Extreme value type I (Gumbel-type) distribution
	extremeII -- Extreme value type II (Frechet-type) distribution
	gamma -- Gamma distribution
	laplace -- Laplace distribution
	logistic -- Logistic distribution
	lomax -- Lomax distribution (Pareto distribution of second kind)
	normal -- Normal distribution
	pareto -- Pareto distribution (of first kind)
	powerexponential -- Powerexponential (Subbotin) distribution
	rayleigh -- Rayleigh distribution
	student -- Student's t distribution
	triangular -- Triangular distribution
	uniform -- Uniform distribution
	weibull -- Weibull distribution

	UNURAN Library of continuous multivariate distributions
	multinormal -- Multinormal distribution

	UNURAN Library of discrete univariate distributions
	binomial -- Binomial distribution
	geometric -- Geometric distribution
	hypergeometric -- Hypergeometric distribution
	logarithmic -- Logarithmic distribution
	negativebinomial -- Negative Binomial distribution
	poisson -- Poisson distribution

	UNURAN Library of random matrices
	correlation -- Random correlation matrix

	Error handling
	Error reporting
	Output streams

	Debugging
	Testing
	Miscelleanous
	Mathematics

	A Short Introduction to Random Variate Generation
	The Inversion Method
	The Rejection Method
	The Composition Method
	The Ratio-of-Uniforms Method
	Inversion for Discrete Distributions
	Indexed Search (Guide Table Method)

	Glossary
	Bibliography
	Function Index

